| Mend | el's 2 nd Law: | | | | | | |--------|--|----------------------------|-----------|---------|----------|-----------------------------| | | | | | | | | | | | | | | | | | • | How does meiosis explain Mendel's 1 st Law? | | | | | _ | | • | How does meiosis explain Mendel's 2 nd Law? | | | | | _ | | Chrom | nosomal theory of inheritance | | | | | _ | | What 2 | 2 things support the chromosomal theory of inl | neritance a | and how? | | | | | 1. | | | | | | | | 2. | | | | | | | | Lectu | re 3 | | | | | | | • | What is the molecular explanation for Incomp | lete domir | nance? | | | _ | | | | | | | | _ | | • | Define "overdominance". What is it otherwise | known as | ? Give an | example | | _ | | | | | | | | _ | | | | Phenotypes
at Different | Normal | Carrier | Diseased | Dominance Relations at Each | Fill in the table stating which allele is dominant or recessive or whether they are incomplete or co-dominant. | Phenotypes
at Different
Levels of
Analysis | Normal
AA | Carrier
AS | Diseased
SS | Dominance
Relations at Each
Level of Analysis | |---|--------------------------|--------------------------|--------------------------|---| | B-Globin
polypeptide
production | | 90 | 000 | | | RBC Shape @
Sea Level | Normal | Normal | Sickled Cells
Present | | | RBC
Concentration
@ Sea Level | Normal | Normal | Lower | | | RBC Shape @
High Altitude | Normal | Sickled Cells
Present | Severe
sickling | | | RBC
Concentration
@ High
Altitudes | Normal | Lower | Very Low,
Anaemia | | | Susceptibility
to Malaria | Normal
Susceptibility | Resistant | Resistant | | | List some things which mode of inheritance depends on: | |--| | 1 | | | | 2 | | 3 | | Sometimes opinion on whether a trait shows complete dominance of not depends on how closely we examine. Use an example to explain: | | Define polymorphic | | | | Define monomorphic | | What is the molecular explanation of the ABO blood groups : | | | | | | | | Define a lethal allele : | | Define Pleiotropy and provide an example: | | | | Define penetrance and list <u>one example</u> of a trait that shows varied penetrance | | What does a disease which shows 80% penetrance mean? | | Define expressivity and list <u>one example</u> of a trait that shows varied expressivity. | | Give 2 exar | nples of effects of environment on temperature. | |--|---| | 1. | | | | | | | | | | | | 2. | | | | | | | | | | | | Define sex - | influenced traits. Does this mean it is 'sex-linked'? Explain. | | | | | | | | Define sex- | limited traits. | | | | | Define the | principle behind the complementation test . | | | | | | | | Lecture 4 | | | Define com | plementary gene action. | | | | | What phen | otypic ratio does it produce? | | Define rece | essive epistatis | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | - | otypic ratio does it produce?he <u>Bobay phenotype</u> relate to recessive epistasis? | | | | | | | | Define don | ninant epistasis | | | | | What phen | otypic ratio does it produce? | | Which is more common, use | eful? | | | | | | |--|--|--------------------------------|---------------------------|-------|--|--| | . , , | 1 | 1 | | | | | | Level of polymorphism | | | | | | | | Number of 'alleles' | | | | | | | | Ease of scoring | | | | | | | | Number detected | CCIICS | 5141 5 | Jatemies | | | | | Fill in the table | Genes | SNPs | Satellites | | | | | Fill in the table | What is the difference betw | een an KFLP and a sat | eilite DNA marker? | | | | | | And the state of t | DELO I | III: DAIA I C | | | | | | Mini-satellites: | | | | | | | | Micro-satellites: | | | | | | | | Distinguish between: | | | | | | | | What is a micro-/mini- satel | lite? | | | | | | | | | | | | | | | Define SNPs : | | | | | | | | Lecture 8: DNA Marker | rs & Molecular Ma | pping | | | | | | or can you map gen | | | , pridoct | | | | | 6. Can you man gen | es even if the rece | ssive alleles are in repulsion | n phase? | | | | | | | | | | | | | 5. What is the advantage of a trihybrid cross over a dihybrid cross? | | | | | | | | | | | | | | | | 4. Calculate interfer | encer (And What Is | sinterierencer) | | | | | | 1 Calculate interfer | onco2 / And what :- | interference? | | | | | | | | | | | | | | 3. Change (correct) | the distance calcul | ations using the double rec | ombinants? | | | | | | | | | | | | | 2. Identify the doub | le recombinants? | | | | | | | | | | | | | | | C | | C | | | | | | • | How can you use a trihybrid test cross to: 1. Figure out the chromosomal order of three linked genes? | | | | | | | How can you use a tribut | orid test cross to: | | | | | | | What is a trihybrid test of | ross? | | | | | | | | | | | | | | | Shorter miter verning dista | | | | | | | | shorter intervening dista | | S | | pc | | | | wny did Sturtevant's ma | ip nave different di | stances between distant ge | enes compared to adding u | n the | | |