
 

 

Revision Notes for ETC2410 – Sample  
 

3. Linear Regression Model 
 

Lecture #3 – The Linear Regression Model 
• Simple LRM. E(yi|xi) = β0 + β1xi + ui. (#1) CONDITIONAL DISTRIBUTION- model Y with a mean 

and variance for each level of the predictor X; (#2) LINEARITY- that E(yi|xi) = β0 + β1xi for each 
observation i. (#3) ZERO CONDITIONAL MEAN- E(u|x) = 0. Deviations occur, but on average = 0 

o MARGINAL EFFECT: β1; 1-UNIT INCREASE in X → E(Y) rises by β1, all other factors 
constant. Can take the DERIVATIVE of y with respect to x: 𝝏𝒚

𝝏𝒙
 = β1. Also, β1 = Cov / Var. 

▪ From the linearity assumption, follows that: E(yi|xi+1) – E(yi|xi) = β1.  
o INTERCEPT: β0; EXPECTED VALUE of the DV (Y) when all predictor variables (X) = ZERO. 

β̂0 = the predicted value of yi when xi = 0. This is because- E(y|x=0) = β0 + β1(0).  
o RESIDUALS: ui. captures UNEXPLAINED VARIATION; factors affecting the DV NOT 

CAPTURED by the model’s predictors (xi). The residual is: �̂� = �̂� – Y = yi – E(yi | xi).  
• OLS estimator. OLS ESTIMATOR: ESTIMATES REGRESSION COEFFICIENTS (β0 and β1) by 

MINIMIZING the SUM OF SQUARED DIFFERENCES b/w OBSERVED and PREDICTED values. 
o Aim of OLS estimator: use OBSERVED DATA to estimate the UNKNOWNS β0 and β1. 

Control the fit of the model. There is sampling variability, as these are random variables. 
o Method of the OLS: (#1) calculate PREDICTION ERRORS- �̂�𝐢 = yi – b0 – b1xi. (#2) 

substitute into the SSR Eq. SSR(b0, b1) = ∑ �̂�𝐢
𝐧
𝐢=𝟏  = ∑ (𝐲𝐢 −  𝐛𝟎 −  𝐛𝟏𝐱𝟏)𝟐𝐧

𝐢=𝟏 . (#3) To 
MINIMISE SSR, set the derivative = 0 with respect to each parameter (β0 and β1). This 
gives TWO equations to solve for TWO unknowns.  

▪ Formula for b1: �̂�𝟏 = 
∑ (𝐱𝐢− �̅�)(𝐲𝐢− �̅�)𝐧

𝐢=𝟏

∑ (𝐱𝐢− �̅�)𝟐𝐧
𝐢=𝟏

 = 𝐂𝐨𝐯(𝐱,𝐲)̂

𝐕𝐚𝐫(𝐱)̂  = 
�̂�𝐱𝐲

�̂�𝐱
𝟐 . Formula for b0: �̂�𝟎 = �̅� −  �̂�𝟏�̅�.  

 
Properties of data that hold during OLS. (yi = β0 + β1xi + ui, i = 1, …, n by the method of OLS):  

• (P1): ∑ �̂�𝐢
𝐧
𝐢=𝟏  = 0. Residuals sum to zero. On avg, model is right- balance in middle of the data.  

• (P2): ∑ 𝐱𝐢�̂�𝐢
𝐧
𝐢=𝟏  = 0. Errors are NOT SYSTEMATICALLY RELATED to predictor. Errors are EVENLY 

SPREAD across the x-axis, model captured all linear information in the predictor.  
o For P2: the vector UHAT is ORTHOGONAL to columns of X- x’u = 0.  

• (P3): �̅� = 𝐲^̅̅ ̅, where �̅� = 𝟏
𝐧

 ∑ 𝐲𝐢
𝐧
𝐢=𝟏  and 𝐲^̅̅ ̅ = 𝟏

𝐧
 ∑ �̂�𝐢

𝐧
𝐢=𝟏 . Avg of actual values = avg of the predicted.  

 
• R2. R-SQUARED (COEFFICIENT OF DETERMINATION): measure of GOODNESS OF FIT. 

PROPORTION of SAMPLE VARIATION in y explained by x. R2 = SSE / SST = 1 – SSR/SST.  
o SST: SST → total sample variation in y (total variation of observed data around its mean). 

SST does not consider a model. SST = SSE + SSR. DECOMPOSED into SSR and SSE: 
▪ SSE: part of SST explained by IVs in model. �̂�0 + �̂�1x → SSE, explaining Var(YHAT). 

Measures variation in PREDICTED VALUES around the mean. : ∑ (�̂�𝐢 − �̅�)𝐧
𝐢=𝟏

2. 
▪ SSR: the part of SST NOT explained by the model. UHAT → SSR, accounting for 

variation not explained by predictors. û: ∑ �̂�𝐢
𝟐𝐧

𝐢=𝟏 .  
 

• Multiple LRM. The conditional mean of y depends on “k” explanatory variables. For the general 
MLR, it follows that: E(yi | xi1 + 1, xi2, …,xik) – E(yi | xi1, xi2, …, xik) = β1.  

o Coefficient interpretation: b1 measures average ∆ in Y in response to 1-unit ∆ in X, 
HOLDING VALUES OF ALL OTHER PREDICTORS CONSTANT. EXPLICITLY account.  



 

 

• MLR in matrix notation. (#1) n observations = n equations with the unknown coefficients. (#2) 
Formulate in matrix algebra – stack equations for each n. (#3) write the model as y = Xβ + u.  

o Vectors- (#1) y & u = n x 1 (stack observations from 1 to n). (#2) coefficient V β (k+1) x 1. 
o X is a regressor matrix, with (#1) a column of 1’s for b0, (#2) k+1 columns and n rows. 

• OLS in Matrix Form. �̂� = (X’X)-1X’y is the OLS estimator of β in matrix notation.  
o Define a VECTOR of OLS estimates for β. (#1) vector of OLS FITTED VALUES is �̂� = 𝐗�̂�. 

(#2) vector of OLS RESIDUALS is �̂� = 𝐲 −  𝐗�̂�. (#3) So, the SSR equals ∑ �̂�𝐢
𝟐 =  �̂�′�̂�𝐧

𝐢=𝟏 =

(𝐲 − 𝐗�̂�)′(𝐲 − 𝐗�̂�). 
o X’X MUST BE an INVERTIBLE MATRIX → columns of X must be LINEARLY INDEPENDENT.  

▪ LINEAR INDEPENDENCE: no columns in the matrix can be built by adding or 
scaling others (linear combination). Can’t recreate one column by mixing others. 

• Interpreting linear dependence: a regressor is not adding any NEW info. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


