Revision Notes for ETC2410 – Sample

3. Linear Regression Model

Lecture #3 – The Linear Regression Model

- <u>Simple LRM</u>. $\mathbf{E}(\mathbf{y}_i|\mathbf{x}_i) = \beta_0 + \beta_1\mathbf{x}_i + \mathbf{u}_i$. (#1) **CONDITIONAL DISTRIBUTION** model Y with a mean and variance for each level of the predictor X; (#2) **LINEARITY** that $\mathbf{E}(\mathbf{y}_i|\mathbf{x}_i) = \beta_0 + \beta_1\mathbf{x}_i$ for each observation i. (#3) **ZERO CONDITIONAL MEAN** $\mathbf{E}(\mathbf{u}|\mathbf{x}) = 0$. Deviations occur, but on average = 0
 - MARGINAL EFFECT: β_1 ; 1-UNIT INCREASE in X \rightarrow E(Y) rises by β_1 , all other factors

constant. Can take the <u>DERIVATIVE</u> of y with respect to x: $\frac{\partial y}{\partial x} = \beta_1$. Also, $\beta_1 = Cov / Var$.

- From the linearity assumption, follows that: $E(y_i|x_i+1) E(y_i|x_i) = \beta_1$.
- **INTERCEPT:** β_0 ; <u>EXPECTED VALUE</u> of the DV (Y) when all predictor variables (X) = **ZERO**. $\hat{\beta}_0$ = the predicted value of y_i when $x_i = 0$. This is because- **E(y|x=0) = \beta_0 + \beta_1(0)**.
- **RESIDUALS**: **u**_i. captures **UNEXPLAINED VARIATION**; factors affecting the DV <u>NOT</u> <u>CAPTURED</u> by the model's predictors (xi). The residual is: $\hat{\mathbf{u}} = \hat{\mathbf{Y}} - \mathbf{Y} = \mathbf{y}_i - \mathbf{E}(\mathbf{y}_i | \mathbf{x}_i)$.
- <u>OLS estimator</u>. **OLS ESTIMATOR**: <u>ESTIMATES REGRESSION COEFFICIENTS</u> (β_0 and β_1) by **MINIMIZING** the <u>SUM OF SQUARED DIFFERENCES</u> b/w **OBSERVED** and **PREDICTED** values.
 - Aim of OLS estimator: use OBSERVED DATA to estimate the <u>UNKNOWNS</u> β_0 and β_1 . Control the fit of the model. There is sampling variability, as these are random variables.
 - Method of the OLS: (#1) calculate PREDICTION ERRORS- $\hat{\mathbf{u}}_{i} = \mathbf{y}_{i} \mathbf{b}_{0} \mathbf{b}_{1}\mathbf{x}_{i}$. (#2) substitute into the SSR Eq. SSR($\mathbf{b}_{0}, \mathbf{b}_{1}$) = $\sum_{i=1}^{n} \hat{\mathbf{u}}_{i} = \sum_{i=1}^{n} (\mathbf{y}_{i} - \mathbf{b}_{0} - \mathbf{b}_{1}\mathbf{x}_{1})^{2}$. (#3) To MINIMISE SSR, set the derivative = 0 with respect to each parameter (β_{0} and β_{1}). This gives TWO equations to solve for TWO unknowns.
 - gives TWO equations to solve for TWO unknowns. • Formula for b1: $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\widehat{cov(x,y)}}{Var(x)} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x^2}$. Formula for b0: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$.

<u>Properties of data that hold during OLS</u>. ($y_i = \beta_0 + \beta_1 x_i + u_i$, i = 1, ..., n by the method of OLS):

- (P1): $\sum_{i=1}^{n} \hat{u}_{i} = 0$. Residuals sum to zero. On avg, model is right-balance in middle of the data.
- (P2): ∑_{i=1}ⁿ x_iû_i = 0. Errors are <u>NOT</u> SYSTEMATICALLY RELATED to predictor. Errors are EVENLY SPREAD across the x-axis, model captured all linear information in the predictor.
 For P2: the vector UHAT is ORTHOGONAL to columns of X- x'u = 0.
- (P3): $\overline{y} = \overline{y^{\wedge}}$, where $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\overline{y^{\wedge}} = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i$. Avg of actual values = avg of the predicted.
- <u>R²</u>. **R-SQUARED** (COEFFICIENT OF DETERMINATION): measure of GOODNESS OF FIT.
 <u>PROPORTION</u> of SAMPLE VARIATION in y explained by x. R² = SSE / SST = 1 SSR/SST.
 - SST: SST → total sample variation in y (total variation of observed data around its mean).
 SST does not consider a model. SST = SSE + SSR. DECOMPOSED into SSR and SSE:
 - SSE: part of SST explained by IVs in model. $\hat{\beta}_0 + \hat{\beta}_1 x \rightarrow SSE$, explaining Var(YHAT). Measures variation in <u>PREDICTED VALUES</u> around the mean. : $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$.
 - SSR: the part of SST NOT explained by the model. UHAT \rightarrow SSR, accounting for variation not explained by predictors. $\hat{u}: \sum_{i=1}^{n} \hat{u}_{i}^{2}$.
- <u>Multiple LRM</u>. The conditional mean of y depends on "k" explanatory variables. For the general MLR, it follows that: E(y_i | x_{i1} + 1, x_{i2}, ..., x_{ik}) E(y_i | x_{i1}, x_{i2}, ..., x_{ik}) = β₁.
 - Coefficient interpretation: b1 measures average Δ in Y in response to 1-unit Δ in X, HOLDING VALUES OF ALL OTHER PREDICTORS CONSTANT. EXPLICITLY account.

- <u>MLR in matrix notation</u>. (#1) n observations = n equations with the unknown coefficients. (#2) Formulate in matrix algebra – stack equations for each n. (#3) write the model as $y = X\beta + u$.
 - $\circ \quad \text{Vectors-(\#1) y \& u = n x 1 (stack observations from 1 to n). (\#2) coefficient V \beta (k+1) x 1.}$
 - X is a regressor matrix, with (#1) a **column of 1's** for b0, (#2) **k+1** columns and **n** rows.
- OLS in Matrix Form. $\hat{\beta} = (X'X)^{-1}X'y$ is the OLS estimator of β in matrix notation.
 - Define a <u>VECTOR</u> of **OLS estimates** for β . (#1) vector of OLS **FITTED VALUES** is $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. (#2) vector of OLS **RESIDUALS** is $\hat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$. (#3) So, the **SSR** equals $\sum_{i=1}^{n} \hat{\mathbf{u}}_{i}^{2} = \hat{\mathbf{u}}'\hat{\mathbf{u}} = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$.
 - X'X <u>MUST BE</u> an **INVERTIBLE MATRIX** \rightarrow columns of X must be **LINEARLY INDEPENDENT**.
 - **LINEAR INDEPENDENCE**: no columns in the matrix can be built by adding or scaling others (linear combination). Can't recreate one column by mixing others.
 - Interpreting linear dependence: a regressor is not adding any <u>NEW</u> info.