
Integrated physiology Week 5 CV changes across the lifecycle Mesoderm What germ layer is the heart derived from? **formed at week 7 1. Heart starts out as 2 endocardial tubes 2. 2 tubes fuse into single primitive heart tube 3. Primitive heart tube elongates & differentiates 5 steps in heart looping into 5 regions 4. **Looping process** → C and S shaped loops 5. 4 heart chambers formed 4 regions of elongated • Bulbus cordis + primitive ventricle > ventricles Primitive atrium → atria primitive heart tube • Sinus venosus -> Atria and SA node • Truncus arteriosus \rightarrow Aorta and pulmonary and what they become **Endocardial Tubes** Primitive heart tube Truncus arteriosus **Bulbus Cordis** Primitive ventricle Primitive atrium ★ Truncus arteriosus 🙀 Bulbus Cordis ★ Sinus Venosus ★ Aortic arch arteries ★ Truncus arteriosus When does fetal heart **DAY 35** 4 chambered heart begin pumping?

3 bipasses in fetal heart and their location	Foramen ovale right to left atria Ductus venosus liver bypass Ductus arteriosus pulmonary artery to aorta			
Blood pathway for ductus venosus	 Bypass liver Shunts from umbilical vein to inferior vena cava 			
Fetal oxygenated blood pathway (8)	Placenta → umbilical vein → RA → foramen ovale → LA → LV → Aorta → systemic circulation			
Fetal deoxygenated blood pathway (8)	Superior/inferior Vena Cava → RA → RV → pulmonary artery → ductus arteriosus → aorta → umbilical arteries → placenta			
Eustacian valve function	 Directs oxygenated fetal blood from inferior vena cava toward foramen ovale Directs less oxygenated fetal blood from superior vena cava toward right ventrical 			
Foramen ovale function and what blood is prioritised?	 Lung bypass: shunts blood from RA to LA This blood is more oxygenated and prioritized for upper body and brain (organ development) 			
Ductus arteriosus function and location	LOC – connects pulmonary artery to descending aorta • Lung bypass			

Ductus Venosus function and location	Located in fetal liver, connects umbilical vein to inferior vena cava • Liver bypass Fetus: arteries take deoxy and veins take oxy **This is because placenta takes over lung function		
Difference between adult and fetal blood vessels			
Why is there less demand for oxygenated blood in fetus LOWER body?	All major organs are in upper body Aorta preferentially sends less oxygenated blood to lower body		
Eustacian valve location	Opening of inferior vena cava into Right atrium		
What forces fetal blood to bypass lungs	Fetal lungs are fluid filled not air filled – causing high resistance Blood takes easier pathway through ductus arteriosus		
Where do umbilical arteries arise from	Internal iliac arteries (pelvis) Carry deoxy blood from fetus to placenta		
Is any blood sent to liver or lungs?	Yes small amountenough for tissue to develop		

What causes foramen ovale to close	Baby's first breath causes lung expansion Blood goes to lungs then LA Increase pressure in LA forces FO closure	
What causes ductus venosus closure	Clamping umbilical cord = loss of placental circulation Ductus venosus collapses and closes Umbilical vein/artery close	
What causes ductus arteriosus closure	Loss of placental prostaglandins cause vasoconstriction -> ductus arteriosus closes	
What is 'the hole in the heart' birth defect	Foramen ovale stays open	
Define stroke volume and cardiac output	SV – amount of blood pumped by LV (mL) CO – total volume pumped per minute (L/min)	
What allows adaption when metabolic demands change	Homeostatic mechanisms	
Difference in SV, HR, CO between children and adults	Child HR: 130-150 Adult HR: 60-100 Child SV: 2-4 mL/contraction Adult SV: 70-120 mL/contraction Child CO: lower Adult CO: higher	

Why do children have higher HR but lower CO compared to adults?	Lower SV is compensated by a higher HR Children have higher metabolic needs			
Difference between skeletal and cardiac muscle	Cardiac – decreased capacity for regeneration ** lack of satellite cells to help repair unlike muscle cells			
What is myocardial infarction and why is it so bad?	Blood flow to heart is blocked – causing cell death Cardiac tissue cannot regenerate – cells replaced with nonfunctional fibrous tissue			
New treatment for heart cell damage	Pluripotent stem cell-derived cardiomyocytes			
What precedes CV disease	Vascular dysfunction			
3 modifyable risk factors fir CVD	SmokingCholesterolWeight/adiposity			
3 independent CV risk factors	EthnicityAgeSex			

CV risk for 45 y/o males and females	Males with 2+ risk factors ~ %50 of CVD before 80 Females with 2+ risk factors ~ %31 chance of CVD before 80			
3 hallmarks of aging that affect the heart	 Impaired Ca²⁺ homeostasis Neurohormonal signaling Mitochondrial dysfunction and ROS 			
2 age associated cardiac pathologies	 Heart failure Fibrillation (atrial and ventricular) 			
Difference between atrial and ventricular fibrillation	Ventricular is more life threatening than atrial			
3 layers of heart wall	Epicardium: outer layer Myocardium: middle, cardiac muscle Endocardium: inner layer, minimize surface friction **Pericardium surrounds heart			
Functional change to aging heart	Diastolic dysfunction			
Structural change to aging heart	Left ventricular hypertrophy (because of increased work load) **Can lead to diastolic dysfunction and ventricular fibrillation			

Molecular change to aging heart	 Mitochondrial dysfunction Ca²⁺ signaling change Neurohormonal 			
Which layer is most relevent in heart failure	• Myocardium			
What is an intercollated disk	Separates individual cardiac muscle cells			
6 steps in excitation contraction coupling in heart muscle	1. Action potential: electrical signal travels down sarcolemma 2. Depolarization: sarcolemma depolarize, spreads down T tubules 3. Ca ²⁺ released from sarcoplasmic reticulum 4. Ca ²⁺ causes more Ca ²⁺ to be released 5. Cross bridge cycling actin and myosin, Ca ²⁺ and ATP required 6. Relaxation Ca ²⁺ pumped back into SR, thick and thin filaments detach			
What is heart failure	Heart cannot pump blood efficiently, body does not get sufficient nutrients ** Progressive condition → stages of severity			
3 common causes of heart failure	Coronary artery diseaseMyocardial infarctionAging			
What part of the heart is mostly affected by heart failure	Left ventricle → decreased blood volume and oxygen to all of body			

2 causes of death from heart failure	Insufficient cardiac outputVentricular fibrillation			
What is arrhythmia	Irregular heart beat			
What is ventricular fibrillation	Ventricles beat very irregularly and fail to pump blood properly Type of arrhythmia **Can lead to cardiac arrest			
Heart failure treatment	Slow progression			
Heart contraction breakdown (5)	P wave atrial contraction Q interventricular septum depolarizes R ventricles depolarize and contract S upper ventricles depolarize T wave ventricles repolarize (relax)			
What is needed for ventricular fibrilations	Defibrillator to reset heartbeat			
What is Diastole and Systole	Diastole – filling (relax) Systole – Pumping (contract)			

4 functional changes in left ventricular dysfunction and other name	 Diastolic dysfunction Slow cardiomyocyte relaxation Ventricular thickening + fibrosis Ventricles refill very late in diastole 			
Consequence of ventricular fibrosis	Stiffer heart			
Difference between dysfunction and healthy heart diastole	Dysfunctional refills very late in diastole			
Why does aging heart hypertrophy	Myocytes die – heart has to work harder Remodeling – fibrosis and hypertrophy			
Why is myocardium hypertrophy a bad thingin ventricular dysfunction	Ventricular chamber narrows • Contributes to diastolic dysfunction			
How does increased ROS affect the heart?	Too much ROS damages Ca ²⁺ regulatory proteins • Causes Ca ²⁺ build up in cells • Contributes to ventricular fibrillation			
Difference between healthy and unhealthy myocardium hypertrophy	Healthy – there is a proportional increase in capillary number Unhealthy – not accompanied by capillary increase			

3 consequences of narrow LV	 Cardiac output not maintained Harder for blood to leave heart Heart failure 		
Function of Ca ²⁺ in heart	Intracellular Ca ²⁺ signaling controls contraction and relaxation		
How does abnormal Ca ²⁺ release affect heart?	Contributes to arrhythmias and ventricular fibrillation **Ca ²⁺ leaks out and disrupts normal signaling		
What produces ROS	Mitochondria - Produces ROS under cellular stress		
What is oxidative stress	Too much ROS overwhelms the cell		
To an extent, how does exercise combat ROS	Exercise induces ROS, but also produces antioxidants		
Function of β- adrenergic receptors (3)	 Interface between SNS and CVS Binds adrenaline and noradrenaline to trigger physiological changes Vasodilator 		

What are catecholamines, function?	Homeones and neurotransmitters like adrenaline and noradrenaline Regulate stress response – increase HR, BP, and metabolism		
Catacholamines in 65+ years (4)	 Elevated levels of catecholamines This overstimulates β-adrenergic receptors Induces fight/flight pathway Leads to arrhythmias 		
How do functional changes in disfunctional LV cause heart failure?	 Loss of cardiac cells/age related damage changes LV filling rate Refill occurs later in diastole (inefficient or incomplete) Ventricle can't relax, affects next contraction CO can't be maintained Heart failure 		
How does chronic β- adrenergic stimulation affect heart	 Disrupts Ca²⁺ regulatory proteins Change in contractility and CO decreases Build up of Ca²⁺ in cells Contributes to ventricular fibrillation 		
What makes estrogen cardioprotective? (4)	 Mitigates ROS ↑HDL and ↓LDL Dampen Ca²+ changes in release Modulate β-adrenergic response **research in mice and young people 		
CVD mitigation (4)	DietExerciseAlcoholSmoking		
Heart condition medications (5)	 Vasodilators B blockers Implanted defibrillator ROS scavenging agents Hear transplant 		