Introduction to Concrete Technology

C3S

C2S

C3A

C4AF

Gypsum

Portland Cement type GP

Generalities about concrete

- Ageing/Porous material
- Voids contain 8-15% volume
- Versus time:
 - o Strength Increases
 - Porosity Decreases
- High compressive strength
 - 20 to 45 MPa:Ordinary Concrete
 - o 45 to 120MPa: High Performance concrete.
- Low Tensile strength (compressive strength/10)
- Density 2.3 Tons/m³

Cement + Water = Paste or grout

Paste + Sand = mortar or render

Mortar + coarse aggregate = concrete

25%-35% of volume is water and cement.

Manufacture of Portland Clinker & Cement

- 1. Clinker \rightarrow Produced when limestone and clay burnt together
- 2. Cement \rightarrow produced by Grinding clinker and small amount of gypsum

Raw material for Clinker

LIME (CaO)	- Limestone/Chalk	- C	≈ 91%
SILICA (SiO ₂)	- Clay/Shale/Sand	- S	≈ 4%
ALUMINA (Al ₂ O ₃)	- Clay/Shale/Bauxite	- A	≈ 4%
IRON OXIDE (Fe ₂ O ₃) - Clay/Shale/Ironstone			≈ 1%

Silicates	80 %	$2 \text{ CaO} + \text{SiO2} = \frac{\text{C2S}}{\text{C2S}}$	
		$2 \operatorname{CaO} + \operatorname{SiO2} = \operatorname{C2S}$ $3 \operatorname{CaO} + \operatorname{SiO2} = \operatorname{C3S}$	
Aluminates	20 %	3 CaO + Al2O3 = C3A	
		4 CaO + Al2O3 + Fe2O3 = C4AF	

Content (% by weight)

50-60

15-25

12

8

5

Compound	Oxide Composition	Abbreviation
Tricalcium Silicate	3CaO.SiO ₂	C ₃ S (Alite)
Dicalcium silicate	2CaO.SiO ₂	C ₂ S (Belite)
Tricalcium aluminate	3CaO.Al ₂ O ₃	C ₃ A (Aluminate)
Tetracalcium Aluminoferrite	4CaO.Al ₂ O ₃ .Fe ₂ O ₃	C ₄ AF (Ferrite)

• Add gypsum to prevent flash set.

Portland Cement and Sustainability

- Limestone sampling: landscape deterioration/consumption of natural resources
- Transportation
- Decarbonation of Limestone: High CO₂ release into atmosphere

 Burning process up to 1450oC: require a huge quantity of energy releasing more CO2 in the atmosphere (fossil fuels). 1 Tonne of Portland Cement = 1 Tonne of CO2 into atmosphere.

Green Cements

- SCM's (Supplementary cementitious materials) replace up to 7.5% of the clinker content in cement.
 - o Limestone
 - o Fly Ash
 - 1 to 100μm in diameter, 75% under 45μm
 - Ground Granulated Blast Furnace Slag
 - By product of iron production in blast furnace.
- Minor Additions of up the 5% are added such as kiln dust (inorganic)

7 standard Cements in Australia

General Purpose CementType GP General Purpose

- Cement
- Type GB Blended Cement
- Type GL General Purpose Limestone Cement

Special Purpose Cement

- Type HE High Early Strength Cement
- Type LH Low Heat Cement
- Type SR Sulfate Resisting Cement
- Type SL Shrinkage Limited Cement

Type GP Cement (General Purpose):

- o Clinker
- Mineral additions (<7.5%)
- Minor Additional Constituents (<5%)
- o Gypsum

Type GL Cement (General Limestone):

Type GP Cement + 8-20% Limestone (reduces carbon footprint)

Type GB Cement

- Type GP Cement
- o Fly Ash and/or Slag
- Amorphous Silica (<10%)
- $\circ\hspace{0.1in}$ Higher reduction of carbon footprint. Can improve concrete properties.

% OF 28-DAY COMPRESSIVE STRENGTH 160 Type GB cement 140 120 100 80 60 40 Precautions for GB: 20 Lower early strength (1-day & 3-days) 0 90 0137 28 AGE (days)

AS 3972 Requirements

Specified Properties Reportable **Properties** Setting Time (min/max) Soundness Loss on ignition Chloride content (max) Fineness SO₃ Content (max) Nature of materials Compressive Strength (min) Major oxide composition Peak Temp (LH) (max) Time of peak Temp Rise Expansion (SR) (max) (LH) Shrinkage (SL) (max) Equivalent alkalis