Adverse drug reactions

- Noxious, unintended or undesired response to drug, caused by normal use of normal doses
 - Direct causal relationship between the medicine and the occurrence

ADR	Characteristics
Type A	- Predictable and dose-dependent, usually related to pharmacological actions of drug
(80%)	- Immune system is <i>not</i> involved
	 E.g. Toxicity, intolerance, secondary effects, drug interactions, renal failure
	- Treatment – reduce dose or withhold drug
Type B	- Unpredictable, not dose-dependent
(15%)	- Unrelated to pharmacological actions of the drug, e.g. penicillin allergy
	- Treatment – withhold drug and avoid rechallenge

Type B ADR	Antibodies involved	Examples	Timeline
1 – immediate	IgE	Dyspnoea, urticarial, swelling, anaphylaxis	Hours
2 – cytotoxic	IgM, IgG	Haemolytic anaemia, thrombocytopenia	5-14 days
3 – immune complex	IgM, IgG	Small vessels – nephritis, vasculitis, iritis	7-8 days
4 – cell-mediated	None; involves T-cells	Skin rash, eczema, maculopapular, bullous	Weeks

Type 4: delayed-type reactions (most common)

- T_h1 produces TNF-α and IFN-Υ, activates macrophages
- T_h2 produces interleukins, activates B-cells
- Drugs include abacavir, allopurinol, azathioprine, NSAIDs, terbinafine, quinolones, sulfonamides, beta-lactam antibiotics

Anaphylaxis

- Combination of immediate-type reactions usually occurs within 15 minutes to hours
 - Respiratory symptoms cough, wheeze, hoarseness, cyanosis, upper airway swelling
 - o Cardiovascular tachycardia, severe hypotension, loss of consciousness, palpitations
 - o Dermatological urticarial, erythema, angioedema
 - Nausea, vomiting, abdominal cramps, anxiety, distress
- Treatment adrenaline IM injection into thigh (blue for the sky, orange for the thigh) + hospital
 - Hold autoinjector in place for 10 seconds, repeat dose every 5 minutes until improvement
 - Lay patient flat, ensure open airways
 - o Antihistamines and hydrocortisone are *not* first-line (but may be given later on)
- Causes of anaphylaxis medicines > insect venom > foods

Haptens

- Antigen too small (insufficient molecular weight) to generate immune response on its own
 - o An antigen must be (or attach to) a macromolecule, e.g. large protein, polysaccharide
- Metabolism may produce reactive metabolites haptenate endogenous proteins (increases MW)

Antibiotic allergies

- May affect any organ, but most commonly the skin
- Higher rates in HIV and infectious mononucleosis patients
- Patients with history of penicillin allergy who require cephalosporins
 - o Possible cross-sensitivity as both are beta-lactam antibiotics
 - o Treatment depends on if previous reaction was IgE-mediated, and severity of reaction
- Sulfur allergy no evidence of cross-reactivity between arylamine and non-arylamine sulfonamides
 - o Presence of arylamine ring in sulfonamide structure conveys immunogenicity
 - Arylamine sulfonamides allergic cross-sensitivity within this groups is possible
 - Many antibiotics, sulfasalazine, sulfamethoxazole, amprenavir, fosampranavir

B Sulfamethoxazole. The arylamine moiety, and also probably the 5-member ring containing a nitrogen a

- Non-arylamine sulfonamides no allergic cross-reactivity
 - Acetazolamide, sulfonylureas, loop diuretics, thiazide diuretics, celecoxib
- Allergy to sulfonamides do not need to avoid sulfites/sulfates/sulfur (since low MW)

Term	Definition	
Nuclide	Atomic species identified by exact nuclear composition, including mass #A and atomic #Z	
Radionuclide	Unstable or radioactive nuclide	Mass number
Isotopes	Same atomic #Z but different neutron number = different mass #A	= # of protons + # of neutrons A Z
Isomers	Same number of protons and neutrons, but different energy states	Atomic number = # of protons

Radioactive decay

- 81 elements with ≥1 isotope = 274 nuclides (most of which are unstable) Number of Neutrons (N)
- Heavier nuclides tend to have more neutrons than protons
- Unstable nuclides mostly produced in nuclear reactor or accelerator
- Cyclotron particle accelerator
 - Used to bombard neutron-deficient target with protons
 - Produces positron-emitting radioisotopes

Nuclear instability	Decay mechanism	Mode of decay (i.e. emission)
Excess neutrons	$n \rightarrow p^+ + e^- + v$	Electron (β̄) + neutrino (v)
Excess protons	$p^+ \rightarrow n + e^-$	Positron (β ⁺)or
(neutron deficiency)	$p^+ + e^- \rightarrow n + v$	Electron capture
Excess neutrons + protons	$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}X + ^{4}_{2}He$	Alpha (⁴ ₂ He)

Excited states

- May be multiple excited states
 - \circ $^{60}_{27}$ Co can decay to 2.50 or 1.33MeV to emit two different energies of y rays; $^{131}_{53}$ l has four
- More convenient for imaging if there is only one level of gamma ray energy to detect

Annihilation (gamma) radiation

- After a positron leaves the nucleus, it loses kinetic energy and is annihilated by combining with an electron to form 2 photons (2 gamma rays)
 - $\circ \quad \beta^+ + \beta^- \to 2\gamma$
 - I.e. mass of the particles is converted to electromagnetic radiation (E=mc²)
- Both photons have energy of 0.51MeV, but travel in opposite directions (∴ net momentum = 0)
 - o Since photons are emitted 180° to each other, they can be used in diagnostic scans

Electron capture (K-capture)

- Proton-rich nuclide absorbs/captures electron from an atomic orbital (usually K-shell)
 - o $p^+ + e^- \rightarrow n + neutrino emission$
- Excited state nuclide will emit gamma rays to return to ground state two possible ways
 - 1. Emit energy directly
 - 2. Internal conversion energy is transferred to a bound electron, which is then ejected from the atom

Chemotherapy agents

Cell cycle	$G_0 \rightarrow \text{interphase } (G_1 \rightarrow S \rightarrow G_2) \rightarrow M$
G_0	Quiescence – cells can exit cell cycle in G ₁ to enter G ₀
G ₁ , G ₂	Gap phases – rest, cellular growth and synthesis
S phase	Synthesis – DNA replication
	- DNA helicase – unwinds and unzips helix
	- DNA polymerase – inserts new nucleotides
	- DNA ligase – links sugar-phosphate groups between new nucleotides
M phase	Mitosis – cell division

Anti-metabolites (target S-phase)

- Cancer cells grow rapidly, require more nucleotides than normal cells for DNA synthesis
 - Purine bases (AG) and pyrimidine bases (CTU)
 - Obtained *de novo* and via salvage pathways all cells use both
 - Cancer cells favour de novo synthesis
- Antimetabolites prevent biosynthesis or utilisation of normal cellular metabolites
 - 1. May be enzyme inhibitor or fraudulent building block
 - 2. Incorporated into RNA/DNA to inhibit de novo synthesis of nucleotides
 - 3. Affects replication, transcription and translation
- E.g. pyrimidine analogues (5-fluorouracil), purine analogues (6-mercaptopurine), methotrexate
 - Sufficiently similar to essential metabolite mistaken for, but cannot take its place
 - Usually result from ≥1 bioisosteric changes (similar size but different properties)
 - E.g. $H \rightarrow F$, $CH_2/O \rightarrow S$, $OH \rightarrow NH_2$

Methotrexate (MTX)

- Uses leukaemia
- Resistance due to up-regulation of DHFR gene → insufficient MTX to inhibit all of DHFR
- MOA competitive dihydrofolate reductase (DHFR) inhibitor
 - o Folic acid essential metabolite for biosynthesis of DNA
 - o DHFR is essential in regeneration of folic acid cofactors required for DNA synthesis
 - o DNFR inhibition → absence of cofactor → inhibition of purine and pyrimidine synthesis
- Folic acid → dihydrofolic acid + DHFR → tetrahydrofolic acid → cofactors
- Cofactors 1 carbon donors (formyl CHO or methyl CH₃) necessary to produce DNA bases
 - \circ N¹⁰-formyl-FH₄ for purine synthesis
 - \circ N⁵N¹⁰-methyl-FH₄ for pyrimidine synthesis
 - Thymidylate synthetase normally uses dUMP + cofactor to produce dTMP

5-fluorouracil (5FU)

- Uses breast and stomach cancers; causes bone marrow toxicity
- Resistance due to down-regulation of cellular enzymes needed to add deoxyribosephosphate unit
- 5FU only inhibits thymidylate synthetase blocks conversion of uracil (dUMP) to thymine (dTMP)
 - o Differs from dUMP by replacing H with F (more electronegative) to become dFUMP
- Thymidylate synthetase binds N⁵N¹⁰-methyl-FH₄ cofactor + dFUMP
 - o Produces irreversibly-bound enzyme-substrate complex with the fluorine
 - o Prevents pyrimidine and DNA synthesis