PHAR3816 Notes - Cardiovascular and Respiratory

Evidence-based medicine

- Conscientious, explicit and judicious use of *current best* evidence in making decisions about the care of *individual* patients
- Integrates best research evidence with clinical expertise and patient values
 - Evidence incorporates drug efficacy, observational studies, safety issues
 - Primary evidence = original research
 - Secondary evidence = interpretation of original research
 - Tertiary evidence = use of secondary evidence to make clinical recommendations
- Systematic review/meta-analyses of RCT > cohort studies > case-control > case-series > expert opinion
 - Case series and expert opinion help identify rare cases/side effects of the drug
- Generalisability of trial data to whole popⁿ consider comorbidities, recruitment bias/criteria, age
- 1. Ask a focused question, e.g. is the current treatment of hypertension the best one we have?
- 2. Find evidence in literature, and perform a critical appraisal of evidence for validity/applicability
- 3. Make a decision apply the results to patient or clinical practice then evaluate the outcomes
- 4. Evaluate the outcomes of the applied evidence in patient/practice

Significance	Definition	Parameters
Statistical	Probability that outcome occurred due to chance	P<0.05, confidence interval
Clinical	Does the difference in effect translate to a	Quality of life, symptomatic changes
	meaningful difference in outcome?	

Relative risk (RR)	Ratio of probability of outcome occurring in exposed vs. unexposed	$RR = rac{Incidence in exposed group}{Incidence in unexposed group}$
Absolute relative risk (ARR) =	How many extra outcomes/events are	ARR = difference in risk
risk difference (RD)	due to the exposure	(control – intervention)
Numbers needed to treat	Number of people to receive	NNT = 1/ARR
(NNT)	intervention for 1 to benefit	

	≥20mmHG change in BP	<20mmHG change in BP	Total
Wonderdrug	8(a)	92 (b)	100 (a+b)
Placebo	2 (c)	98 (d)	100 (c+d)
Total			200

Wonderdrug = 8/100 = 0.08 = 8% (incidence)
Placebo = 2/100 = 0.02 = 2%
ARR = 0.08 - 0.02 = 0.06 = 6%
NNT=1/ARR = 1/0.06 = 16.6

Hypertension treatment

- Primary prevention treatment of patients who have not yet developed clinical CVD
- Secondary prevention avoid recurrent events in those who already have CVD
- Aims reduce CVD morbidity/mortality, and microvascular diseases (brain/kidney/retina)
 - o Reduce risk of CVD events myocardial infarction, stroke, heart failure
- Risk assessment for CVD blood pressure (BP), age, gender, lipids, smoking status, diabetes
 - Control a combination of risk factors for synergistic results
- Current blood pressure targets ~140/90mmHg
 - May be higher for elderly (hypotension may cause falls)
 - <65yo/diabetes/renal insufficiency/CHD 130/80mmHg

Blood pressure category	Systolic	Diastolic
	(mmHg)	(mmHg)
Optimal	<120	<80
Normal	<130	<85
Prehypertension	130-139	85-89
Stage 1 hypertension (mild)	140-159	90-99
Stage 2 hypertension (mod)	160-179	100-109
Stage 2 hypertension (severe)	>100	>110

Non-pharmacological	Recommendation	BP reduction
Reduce weight	BMI <25, waist <94/80cm (male/female)	1mmHg per 1% ↓weight
Reduce salt intake	<4g/day	4-5mmHg
Regular physical activity	>30min most days of the week	4-9mmHg
Modify diet	>400g fruit and veg/day, ↓saturated fats and LDL-c	8-14mmHg
Reduce alcohol intake	<2 standard drinks/day	2-4mmHg
Other	Smoking cessation, diabetes control	

Antihypertensive treatment

- Start treatment with a single drug at lowest recommended dose reduces BP in 25-50% patients
 - o Add second antihypertensive rather than increasing dose of the first
- Uncomplicated hypertension begin monotherapy with ACEI/ARA/dihydro-CCB/thiazide (>65yo)
 - o ACEI suitable for kidney disease, diabetes, micro/macro-albuminuria, heart failure
 - o Non-dihydro-CCBs contraindicated in heart failure
 - Thiazide diuretics well-tolerated, avoid if <65yo (†diabetes risk)
- Beta-blockers no longer recommended as first-line therapy in uncomplicated HBP
 - o Increased risk of diabetes onset, reduced stroke-protection
 - Suitable for hypertension + angina

ACE inhibitors (-pril)

- Inhibit angiotensin converting enzyme to inhibit ANGII production
 - ↓Aldosterone/Na⁺/water retention, ↓BP, ↓thirst, vasodilation
- Side effects dizziness, orthostatic hypotension, angioedema, renal artery stenosis (narrowing)
 - Hyperkalaemia stop potassium supplements (aldosterone ↑K⁺ excretion)
- Persistent dry cough due to bradykinin build-up
- Pregnancy category D, triple whammy

ANGII receptor antagonists (-sartan)

- Competitive antagonist of ANGII at AT₁ receptors
 - ↓Vasoconstriction and aldosterone release, ↓TPR/EDV, no effect on bradykinin (no cough)
- Side effects hyperkalaemia, decreased renal function, same as ACEI

β-adrenoceptor antagonists (-olol)

- Non-selective (B₁R/B₂R propranolol) or cardio-selective blockers (B₁R atenolol)
 - ↓Renin and cardiac output (↓arterial BP and workload of heart)
- Treat hypertension, angina, cardiac dysrhythmias, heart failure, tremor, migraine
- Side effects bradycardia, fatigue, reduced exercise tolerance, sleep disturbances, impotence
 - Possible wheezing and acute asthma attacks in asthmatics (bronchoconstriction)

Calcium-channel blockers

- Bind L-type Ca²⁺ channels to block entry of calcium vasodilation, ↓cardiac contraction force/HR
- Dihydropyridines amlodipine, felodipine, lercanidipine, nifedipine
 - o Primarily inhibit calcium entry into arterioles treat hypertension and angina
- Non-dihydropyridines diltiazem, verapamil
 - o Inhibit calcium entry into arterioles and cells in heart and GI tract
 - Treat hypertension, angina, some cardiac dysrhythmias
- Side effects hypotension, headache, flushes, gut reflux
 - o Peripheral oedema (ankle) arteriole dilation and increased permeability of venules
 - Does not respond to diuretics reduce dose or change drug
 - Non-dihydropyridines bradycardia, constipation (blocks L-channels/peristalsis in gut)

Thiazide diuretics

- Inhibit Na⁺/Cl⁻ reabsorption in early distal tubule of nephron ↑Na⁺/water loss, vasodilation
- Side effects dizziness, postural hypotension, impotence, photosensitivity
 - Hypokalaemia, hypomagnesaemia, hyperuricaemia (gout), hyperglycaemia (diabetes)
- Enhance BP-lowering of all other classes except CCBs

Recommended combination therapies

- ACEI/ARA + CCB/low-dose thiazide
- CCB + thiazide
- Other possible combinations BB + ACE/ARA/dihydro-CCB or thiazide (†diabetes risk)
- Contraindications non-dihydropyridines + beta-blockers (bradycardia)

Comorbidity	Suitable drug	Contraindicated drug
Angina	Beta-blockers	
Asthma/COPD		Beta-blockers
Atrial fibrillation	ACEI, ARA, beta-blockers	
Bradycardia		Beta-blockers, non-dihydro-CCBs
Diabetes with proteinuria	ACEI, ARA, CCBs	Beta-blockers, thiazide diuretics
Gout		Thiazide diuretics
Heart failure	ACEI, ARA, beta-blockers, thiazides	Non-dihydro-CCBs
Post myocardial infarction	ACEI, ARA, beta-blockers	

Lipidemics and cholesterol

Cardiovascular disease

- Coronary heart disease, heart attack, angina, ischaemic disease
 - Risk factors age (male >45yo, female >55yo), elevated/modified LDL, low HDL, smoking, hypertension, genetics, diabetes, triglycerides, obesity, high homocysteine levels
- Stroke and peripheral vascular disease
- Atherosclerosis lipid deposits build up on inner arterial walls
 - o Reduced blood flow → clogging of arteries (via thrombotic events) → heart attack/stroke
 - Lipid-rich diet can increase blood lipids (cholesterol and triglycerides)
- 10%↓ in plasma cholesterol = 15%↓ CHD mortality, 11%↓ total mortality

Functions of lipids

- Membrane components and compartmentalisation
- Energy storage and transport
- Cell recognition and signalling
- Major plasma lipids fatty acids, triglycerides, phospholipids, cholesterol (-esters)

Fatty acids

- More than 100 types, C14-C22 and C16-C18 are most common, includes TGs and phospholipids
 - Trans fatty acids increases risk of CHD, ↑LDL, ↓HDL
 - Polyunsaturated fatty acids protect against CHD
 - Mostly unsaturated double bond generally between C9-C10
- Only small amounts of free fatty acids FFAs are toxic
- Essential fatty acids cannot be synthesised, e.g. cis-linoleic acid
 - EFAs and their metabolites have anti-hypertensive and anti-atherosclerotic properties
 - ACEI, HMG-CoA reductase inhibitors, activation of PPARs
 - o Altered EFA metabolism in obesity, hypertension, diabetes, CHD, cancer, schizophrenia
- Triglycerides neutral storage lipids to provide energy in adipocytes and muscle cells
 - Structure three fatty acids per glycerol backbone
 - o Plasma TGs are highly elevated in diabetes and obesity increased risk of CHD
- Phospholipids polar membrane lipids; glycerol (hydrophilic) + two fatty acids (hydrophobic)

Cholesterol

- Important component of cellular membranes
- Precursor of steroid hormones, bile acids, vitamin D and oxysterols (regulate cholesterol synthesis)
- Enzymatic degradation of cholesterol produces:
 - Prenenolone for synthesis of endogenous steroids
 - Bile acids and bile salts
 - De novo cholesterol synthesis 70%, diet intake 30%
- HMG CoA → mevalonate → isopentenyl pyrophosphate → farnesyl pyrophosphate → cholesterol
- Cholesterol synthesis is regulated by:
 - o HMG-CoA reductase converts HMG-CoA to mevalonate
 - o Hormones e.g. insulin (stimulates), glucagon (inhibits)
 - o Metabolites high cholesterol → ↑ oxysterols → transcriptional repression of HMGCR