Starter culture problems

- Strain antagonism mixed cultures either different growth rates (competition, unstable conditions – temperature, substrate, metabolite, biomass, death) or secretion of inhibitors (acids, bacteriocins)
- 2. Loss of desired trait loss of plasmid borne gene; unstable transfer during replication, causing genetic variation
- 3. Cell death and injury mainly mishandling of purchased cultures (temperature abuse etc.) kill cells or inactivate cells to become dormant states
- 4. Inhibitors in raw materials e.g. antibiotics (penicillin in milk), disinfectant (storage vessels, truck, plant etc.)
- 5. Bacteriophages infect and destroy cells

Problems associated with bacteriophages

- If 1 routinely uses <u>pure cultures</u> of bacteria for inoculation of fermented foods, then there is a risk of contamination with bacteriophages
- Bacteriophages expand in numbers with every new batch of fermented food and contaminate the entire manufacturing plant: machinery, floors, pipes etc.
- High levels of bacteriophage will lead to lysis of starter culture and failure of fermentation
- The batch has to be discarded at considerable cost
- Bacteriophages are viruses that infect bacteria, DNA genome surrounded by protein coat, inactive outside bacteria, cannot grow in food

Steps of lytic cycle:

- 1. Attachment/adsorption of a phage on the bacterial cell wall
- 2. Injection of phage DNA into the bacterial cell
- 3. Phage maturation characterized by formation of phage DNA and protein synthesis
- 4. Maturation of phages and lysis of host cell
- 5. Release of progeny phages, infecting other cells

Control of Bacteriophages in starter cultures

- sanitation of site/equipment
- phage insensitive media (reduce Ca²⁺)
- rotation of strains (differ in phage receptors)
- use of mixed starter culture strains
- can develop phage-resistant strains (immune system of bacteria) using CRISPR/Cas system; small part of a phage genome is used to detect and destroy new phage entering the cell

Topic 5a Beneficial uses of microorganisms in foods 2

Microbiology of fermented dairy foods (yoghurt and cheese)

2 categories:

- 1. fermented milk products all ends up in product
- 2. cheeses whey removed in processing

Milk composition and quality:

- fermentation influenced by milk quality/type
- cow's milk varies with breed and season but its major components are protein, lactose, lipid, water and traces of water soluble and lipid soluble vitamins
- rest is water (high water activity)
- lactose is major carbohydrate
- major protein is casein, as colloidal suspension of calcium caseinate
- lipids are in globules of differing size in emulsion

Fermentation adversely affected by

- natural antimicrobial activity of raw milk
- agglutinins, lactoperoxidase (both heat sensitive)
- antimicrobial agents: antibiotics, disinfectants
- enzymes from psychrotrophic bacteria (Pseudomonas) often heat stable, so persist after pasteurization
- thermoduric bacteria (Bacillus) also survive pasteurization; produce lipase and rearrange lipids globules

Yoghurt fermentation

- semi-solid mass, from coagulation of milk by starter culture bacteria
- sharp, acidic taste, smooth texture
- flavor acetaldehyde (aroma; primary flavor 90% of taste), lactate (tart taste), diacetyl and acetate

Batch process of yoghurt production

- 1. Mix ingredients, standardize (water, milk solids etc.)
- 2. pasteurization to:
 - kill off pathogens and reduce microorganisms that would compete with starter culture
 - destroys enzymes and immunoglobulins that may interfere with fermentation
 - improves gel formation/texture (denatures whey proteins)
 - releases nutrients favorable to starter culture bacteria
- 3. homogenize break fat globules down to smaller, more consistent size → smoother/creamier product (even distribution of lipid)

- 4. add **starter culture** at 44-46 degrees (43 gives good acid and flavor; above or below favors growth of one or the other)
- 5. 6 hours incubation to pH 4.8, measure lactic acid levels
- 6. Rapidly cool to 29 degrees to stop further fermentation
- 7. Packaged and cooled to 4.4 degrees and stored 24 hours to pH 4.3