THE NERVOUS SYSTEM

Spinal Nerves

- Mixed spinal nerves run from the spinal column, before separating into the dorsal and ventral primary rami
 - Dorsal is much smaller than the ventral, because it is much less things to control

Somites

- Derived form the mesoderm
 - · Divided into scleroderm, myoderm and dermomyotome
 - · Skeletal system, muscle and the skin, respectively

Level of Control of Muscles

- · Cortical control can essentially manage activity in the whole body
 - · However, we do not have to actively think about all the movements we are doing
- · All muscles have a nerve, which are a mixture of motor and sensory
 - Sensory systems take information about tension, pressure and temperature etc. to allow feedback
 - · Sensory systems are called muscle spindles

Ventral Horn Cells

- If ventral horn cells are stimulated, movement will be initiated
- Consist of a long axon which goes out to a series of muscle fibres
- · These cells drive contraction of muscles
 - Information travels across a neuromuscular junction to trigger a contraction
 - · The neurotransmitter in this instance is acetylcholine

Spinal Pathways

- · White matter around the outside is conversed primarily of axons and cells which support axons
- Grey matter is where the cell body of the neurones reside
- Dorsal medial sulcus is at the back, and the ventral median fissure is the groove at the front
- · Central canal runs through the spinal cord and is filled with CSF
- · Nerve axons run up and down the spinal cord in bundles
 - Dorsal column conveys fine touch and proprioception
 - · Lateral corticospinal tract carries movement information
 - · Ventral corticospinal tract carries motor information to axial muscles
 - · Lateral spinothalamic tract conveys pain and temperature
 - Anterior spinothalamic tract carries crude touch sense to the brain
 - · Decussation of tracts known as the anterior white commissure

Dorsal Column - Medial Lemniscus Pathway

- Dorsal column conveys fine touch and proprioception
- Four nerve endings which may sense fine touch, which begin the pathway
 - Cell bodies for these sensory neurones sit in the dorsal root ganglion
 - · These cells have an axon which runs in two directions
 - These neurones project from the body to the spinal cord
- · Axons from limbs travels up through the dorsal column
- Pathway then ascends through the brain stem
 - In the medulla, there are two nuclei which are the targets for the dorsal column
 - At this point, the axons synapse and decussate
- After this point, they synapse in the thalamus
- First neurone exists in the dorsal root ganglion, second in the gracile nucleus in the medulla, then in the nucleus of the thalamus

Spinothalamic Tract

- Conveys the sensations of pain, temperature and touch
- Beings with nerve endings in the muscles sending information down the axon of a neurone
 - These neurones have cell bodies in the dorsal root ganglion
- · Tract enters the spinal cord and synapses onto a cell body in the dorsal horn of the grey matter
 - · Then decussates, before ascending
- Tract then ascends through the brain stem, before synapsing onto the thalamus

- Thalamus sends projections to the post-central gyrus
- Three neurone pathway:
 - First is in the dorsal root ganglion, second in the dorsal root of the spinal cord, and the third in the thalamus

Corticospinal Tract

- · Pathway which conveys motor control
- · This pathway arises from the pre central gyrus
- Two neurones present, one for the axial and one for the limb muscles
 - · Leave the pathway by first travelling through the internal capsule
 - Then descends to the medulla, where about 70% of the fibres decussate (mostly limb pathway)
 - This point is called the pyramids
- · After leaving the brain stem, these fibres run through the anterior and lateral corticospinal tract
- Fibres then synapse to a neurone in the anterior horn of the grey matter
 - Neurones in the cortex is an upper motor neurone
- · Neurones in the anterior horn then project to the limb and axial muscles

Autonomic Nervous System

- · Functions without us being conscious of it
- · Also called the visceral nervous system
 - · Comes from "viscus", Latin for internal organ
- Present in both the central and peripheral nervous system
- · Higher control is mostly controlled by the hypothalamus
- · Generally involved with involuntary muscle
 - · Consists of both the smooth muscle and cardiac muscle
 - · Also involves glands, which are controlled by
- Nervous system dependent on a lot of feedback
 - · When feedback goes to an organ, it is described as efferent
 - · Stimulation of a visceral muscle can result in it being excited or inhibited
 - · When it is going to the CNS from the PNS, it is afferent
 - A comes before E (like in the alphabet)

Sensations

- · Sensations arising from internal organs hardly ever reach conscious level
 - However, internal organs are sensitive to threatening events, such as pressure, stretching or ischaemia
 - · Pain from internal organs cannot really be distinguished
 - Also cannot be accurately pinpointed

Sympathetic and Parasympathetic Nervous System

- Parts of the autonomic nervous system; i.e. we do not control them
- · Essentially have opposite effects on target organs
 - Sympathetic stimulates the heart to contract faster and more viciously, parasympathetic
 - Sympathetic stimulation allows the bronchi to relax to absorb more oxygen
- Functioning of an organ usually depends on balance of the sympathetic and parasympathetic systems

Control of Involuntary Muscles

- Autonomic pathways contain two neurones between the brain stem and the visceral structures
 - · Skeletal muscles only have one
- The body of the first neurone is in the CNS, neurone two is outside the CNS
 - The axon of neurone 1 terminates at a ganglion, and the impulse is passed to the second neurone
 - The axon before the ganglion is called the pre ganglionic nerve fibre
- The pre ganglionic fibres of the sympathetic division come from the thoracic and lumbar parts of the spinal nerve
 - · The exit of these neurones are called the thoracolumbar outflow
 - These fibres move to the sympathetic chain, which consists of ganglia
- Parasympathetic is much more simple, ganglia are close to the organs that they control
 - · These nerve fibres then travel to target organs

LOCOMOTION

Bipedalism

- · The ability to walk on two legs
- Recognised from Australopithecus afarensis right through to Homo sapiens
- One of the most important developments in the hominin lineage
- Using only two limbs, in humans they are the hind limbs
 - · Bipeds need much longer hind limbs, which enables us to stride efficiently
 - · Striding is the putting of one limb behind the axis of our hip

Reasons for Bipedalism

- · Characteristic of hominins for the last 5-6 million years
- · All people walk very differently because we develop it individually
- · All walking is habitual, upright, bipedal striding
- We are fully committed to bipedalism, rather than incidental bipedalism which occurs in apes and other animals
- Bipedalism predated the expansion of brains by millions of years
 - Therefore, Darwin's theory of freeing our hands to get bigger brains is wrong
 - · Other reasons include:
 - Adaptation to wading life, carrying things, to threaten, as a sexual display and to peer over long distance
- · Thermoregulation is a motivator for running
 - Research indicates that when standing upright you have less solar heat, more breeze, etc
- Energy efficiency is the strongest motivator for specific bipedalism
 - Heat regulation and water conservation contribute to energy efficiency
 - For each molecule of glucose metabolised, heat is produced and water is consumed
 - · We need water to keep us cool etc.
 - · We use almost the same number of calories lying down as we do standing up
 - Human method of walking around is 75% more efficient in energy

Adaptations of Bipedalism

- Around the late Miocene climates started drying (7.2-5.3 mya)
 - Caused a movement from an arboreal to a terrestrial lifestyle
 - When spending 70% of time on the ground, it becomes more efficient to develop bipedalism than it is to conserve arboreal traits
- Bipedalism also minimises the energy cost of finding good fuel
 - Development of brain means a better memory, means you can find food easier
- Walking in open savannah pays to have a long striding motion and good feet

Running as a Biped

- Humans are relatively unstable and slow at sprinting
- When running, we use our legs as springs rather than pendulums
- · Adaptation of nuchal ligament gives us a stable back and head when running
- · Ridge is seen in homo but not in Australopithecus and Pans
 - Means we were likely better than them at running
- Greater gluteal muscles and bigger attachment areas on the iliac spine to allow for more stability

Cost of Transportation

- Metabolic cost of walking is minimal at about 1.5 m/s, which is similar for horses
 - However, horses will maintain this parabolic shape when running, humans' endurance running will become more efficient as speed increases
- We have adapted to being very efficient at endurance running likely to hunt for nutritious meals

Bringing the Support Under the Body

- · Having limbs not under the body is not energy efficient
- · Looking at all the most efficient locomotoers, all have the legs underneath the body
 - However, only humans have been able to balance the centre of mass underneath the head perfectly
 - This allows us to be very stable when we are walking and running and standing upright