Units:

Charge, q, 1.6022 · 10 ⁻¹⁹ C, Coulombs	Voltage, v, Volt
Current, i, Amperes	Energy, w, Watt
Power, $p - w/t$ Watt = J/s	Inductance, L - Henrys
Resistance, R - Ohms	Capacitance, C - Farads

Prefixes:

Giga	G	^9
Mega	M	^6
Kilo	K	^3
Milli	m	^-3
Micro	μ	^-6
Nano	n	^-9
Pico	p	^-12
Femto	f	^-15

Terms

1 011118	
Passive Element	Cannot generate energy
Impedance, Z	Complex resistance, Ohms.
	Captures the magnitude and
	phase change associated with the
	circuit element.
Attenuation	Gain of less than 1
Node	A point where two or more
	circuit elements join
Essential Node	A point where three or more
	elements join
Earth	An earthed ground is literally
	attached to the ground
Loop	A path with the same start and
	end node
Mesh	A loop that does not enclose any
	other loops.
	-
	2 V

Main Formulae:

Maiii i Oilliulac.	
Current:	$i = \frac{dq}{dt}, 1A = \frac{1C}{s}$
Voltage:	$v = \frac{dw}{dq}, 1V = \frac{1J}{c}$
Power:	$p = \frac{dw}{dt}, 1W = \frac{1J}{s}$
Ohms Law:	v = iR
Voltage Divider	$v \xrightarrow{i} v_1 \xrightarrow{+} R_1$ $v_2 \xrightarrow{+} R_2$ $v_j = v \frac{R_j}{R_1 + R_2}$
Current Divider	$i \bigcap_{i_1 \mid s \mid R_1} i_2 \mid s \mid R_2} i_3 \mid s \mid R_3 i_j = \frac{v}{R_j} = i \frac{\left(R_1 \ R_2 \ R_3\right)}{R_j}$
Capacitor Equation:	$q = Cv, i = C\frac{dv}{dt}, 1F = 1C/v$
Inductor Equation:	$v = L \frac{di}{dt}$

Decibels, dB	gain in dB = $20 \log_{10} H $
	H=Vout/Vin
KVL	$v_{1} - v_{2} - v_{3} = 0$ $v_{1} - v_{2} + v_{3}$
KCL	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$

Resistors:

Wheatstone Bridge Circuit:

wheatstone blid	wheatstone bridge Circuit.	
What is it?	-Can be used as a strain gauge -Bridge is said to be balanced when no current flows through the ammeter -Balance by adjusting R3	
Diagram:	$R_{x} = \frac{R_{2}}{R_{1}} R_{3}$	

Mesh Analysis:

ivicom minary sis.	
What is it?	Complex circuit analysis method -must choose a ground
Steps:	-Label unknown mesh currents
	-Find v across each of the circuit elements in terms of mesh currents
	-Use KVL to create simultaneous equations
	-Solve for mesh currents

Equivalent Circuits:

Equivalen	t Circuits:
Thevenin Equivalent Circuit	$ \begin{array}{c c} R_{j} & R_{2} & \\ \hline \hline \\ N_{1} & \\ \hline \\ R_{j} & \\ \hline \\ \\ R_{j} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Norton Equivalent Circuit	$\begin{array}{c c} R_{I} & R_{2} & r = R_{2} + \frac{R_{1}R_{3}}{R_{1} + R_{3}} \\ \hline \downarrow V_{AB} = \frac{V_{1}R_{3}}{R_{1} + R_{3}} & i = \frac{V_{AB}}{r} \\ \hline \downarrow R_{J} & i = \frac{V_{AB}}{r} \\ \hline \downarrow B_{J} & i = \frac{V_{AB}$
N.B.	The r values are the same for Norton and Thevenin $i_{sc} = \frac{v_{oC}}{R_{th}}$ $R_{Th} = R_p$ $3.97A$ 2.27Ω
Super- position	Calculate for each invididual element. Current sources get set to open circuits Voltage sources get set to short circuits
Getting Maximum Power From a Thevenin Source	$v_{Th} \stackrel{\sigma}{\underbrace{\hspace{1cm}}} R_{Th}$ $i_{L} = \frac{v_{Th}}{R_{Th} + R_{L}}$ $P_{L} = i_{L}^{2} R_{L} = \frac{v_{Th}^{2}}{(R_{Th} + R_{L})^{2}} R_{L}$
Thevenin Dependant Source	E.g. $6 \text{ mV} \xrightarrow{1 \text{K}\Omega} i_x \downarrow 200\Omega \qquad 50i_x \qquad 500\Omega$ Find the Thevenin equivalent $i_x = \frac{6 \times 10^{-3}}{1200} = 5 \times 10^{-6} = 5 \mu \text{A}$ $v_{7h} = v_a - v_b = -50 \times 5 \mu \text{A} \times 500\Omega = -125 \text{mV}$ $i_{xc} = -50i_x = -50 \frac{6 \times 10^{-3}}{1200} = -250 \mu \text{A}$ $R_{7h} = \frac{-125 \text{mV}}{-250 \mu \text{A}} = 500\Omega$ Which produces the following:

Capacitors:

1	
What do they do?	-Caps store energy as voltage
$C = \frac{\varepsilon A}{d}$	A = Area of Plates Epsilon = Dielectric Constant d = Distance Between Plates
Series/Parallel	$C_{parallel} = C_1 + C_2$ $C_{Series} = (C^{-1} + C^{-1})^{-1}$
DC Steady State	$i = C \frac{dV}{dT} = 0$ v is constant = open circuit
NB	Discharged Caps are at 0V
Relationship to vi	$v(t) = \frac{1}{C} \int_0^t i d\tau + v(0)$
Energy in a Cap	$w = \frac{1}{2}Cv^2, Watts$

Natural Response of RC Circuit – Discharging $v(t) = v(0)e^{\frac{-t}{RC}}$ Tau = RC = time constant	C_{eq} V_0 R_{eq}
Step Response of and RC – charging $v(t) = I_s R + (V_0 - I_s R) e^{\frac{-t}{RC}}$ $t \ge 0$	P

Inductor:

What do they do?	-Store energy as current -Cannot generate energy, passive element
Series/Parallel	$L_{Series} = L_1 + L_2$ $L_{Parallel} = (L^{-1} + L^{-1})^{-1}$
DC Steady State	$v = L\frac{di}{dT} = 0$
	I is constant, short circuit