Course content

\square Transition to Processing
\square Primitive Operations
\square Algorithms
\square Variables
\square Debugging in Processing (requires processing download)
\square Conditions
\square Loops
\square Functions
\square Scope
\square Compound Data
\square Reference Semantics
\square Refactoring
\square Program Design

Transition to processing

Processing = software and language for learning to code with art

Integer division
/ = quotient
\% = remainder

Examples
$11 / 3=3$
$5 \% 3=2$

Primitive Operations

Processing programs $=$ expressions + statements

- Contains built in expressions
- Mathematical expressions

$$
\begin{array}{ll}
- & + \\
- & - \\
- & * \\
- & 1
\end{array}
$$

Values $=$ grouped into types ($3,-35,4.5$)
Types = set of values that work the same (int, float, char, boolean)

Int = whole numbers ($1,-5,0$)
Float $=$ numbers with decimals (2.4, -44, 0.0, 2.0, -4.0)
Char = single characters ($\mathrm{a}, @, \$, \wedge$)
Boolean = logical statements (true, false)

Algorithms

Algorithms = steps to complete a specific task

- Purpose
- Inputs
- Effects
- Outputs

Examples

Add two numbers

- Purpose = get sum of 2 numbers
- Inputs = 2 numbers
- Effects = none
- Outputs = a number

Mowing the lawn

- Purpose = shorten the grass
- Input = area to mow
- Effects = shorter grass
- Outputs = hay

Purpose = name
Inputs = informed
Effects = changer
Outputs = producer

Variables

Variables $=$ store information and can be changed

Statements $=$ sections of code that does something

- Draw on the screen

Expression $=$ sections of code that has a value

- int $x=5$ ($x=$ expression contains value 5)

Values $=$ expressions
Variables = expressions
Declarations = statements (int x)
Assignments $=$ statements $(x=4)$

Memory banks = grid of boxes
Boxes $=$ slots in memory and holds a value

Program with no variables = empty holes

Program with values of 1 and $15=2$ slots

Sometimes located at other memory slots

Creating memory slots

1. Name a slot (int x)
2. Fill it $(x=5)$

Conditions

Conditional = statements
Boolean = expression (true, false)

Conditions = based on boolean expressions
if condition

- If expression = true then runs conditional code
- If expression = false then runs rest of the code

if-else condition

- If expression = true then runs the if statements
- If expression = false then runs the else statements
- Rest of the code runs afterwards

