Source	SS	df	MS	F
(A)	$S S_{a}$	(a-1)	$S S_{a} / d f_{a}$	$M S_{a} / M S_{E}$
(B)	$S S_{b}$	(b-1)	$S S_{b} / d f_{b}$	$M S_{b} / M S_{E}$
AxB	$S S_{a b}$	$(a-1)(b-1)$	$S S_{a b} / d f_{a b}$	$M S_{a b} / M S_{E}$
Error (res; w/in)	$S S_{E}$	$a b(n-1)$	$S S_{E} / d f_{E}$	
Total	S_{T}	$N-1$		
Source	SS	df	MS	F
Sex (A)				
SES (B)				
A \times B				
Error (res; w/in)				
Total				

Factorial ANOVA assumptions:

1. DV measured on interval/ratio scale (numeric)
2. IV's are categorical and consist of 2 or more levels
3. Independence of observations (usually met by design) - no relationship between observations w/in or between groups (levels)
a. Randomness and representativeness
4. Normality - observations of DV normally distributed for each level of IVs
5. Homoscedasticity - use "egen cell = group(IV IV)" then "robvar DV, by (cell)"

Factorial ANOVA steps

1. Understand RQ and hypotheses, sampling pop., and how variables are measured/manipulated (type and scale)
a. HO: mean $1=$ mean $2=$ mean 3
b. $H A=$ at least one mean is different from the others
2. Univariate statistics and graphical summaries.
a. By IV IV, sort: summarize DV, detail OR table IV IV, contents(n DV mean DV sd DV) row col format (\%6.2f)
3. Check assumptions - swilk and robvar
a. Egen cell= group(IV IV), then Robvar DV, by (cell) to check homogeneity
b. Bysort IV IV: swilk DV to check normality of each group
4. Run AVOVA - look at interaction first. Does at least one of the groups differ significantly from the rest? Anova DV IV\#\#IV. margins IV\#IV, post then marginsplot (must follow anova command)
a. If the interaction is significant $->$ do simple effects (step 5). Simple effects $=$ cell means
i. If there are 3+ levels to the IV, must do post hoc to determine nature of difference
b. If interaction is not significant -> look at simple main effects
5. Secondary analyses
a. Simple effects for significant interactions and run post hoc as needed Bonferroni/Scheffe and pairwise comparisons
b. Post hoc for main effects if more than 2 means and main effect significant
6. Interpret

is the interaction significant?

no

analyse main
analyse simple effects
effects
is the main
is the simple
effect significant?
effect significant?
$2+$ groups:
use post-hoc
comparisons
2 groups:
use means
to interpret
no
stop

no

to

2 groups: $2 t$ groups
use means use post-hoc to interpret companison f

Factorial ANOVA calculation steps by hand

1. Calculate SS for each factor, interactions), total, and error
a. If using computational formula, also calculate SS for each cell.
b. Then calculate ff
2. Calculate MS for each factor, interactions) and error
3. Calculate F for each factor and interactions).
(shouldn't be asked to calculate by hand, but just in case)
Definitional formula:
4. $S S_{a}=b n \sum\left(\bar{X}_{a i}-\bar{X}\right)^{2}$
5. $S S_{b}=a n \sum\left(\bar{X}_{b i}-\bar{X}\right)^{2}$
6. $S S_{a b}=n \sum\left(\bar{X}_{i j}-\bar{X}_{b i}-\bar{X}_{a i}+\bar{X}\right)^{2}$
7. $S S_{\text {res }}=\sum\left(X_{i j k}-\bar{X}_{i j}\right)^{2}$
$\bar{X}_{i j}=$ cell mean $\quad \bar{X}_{a i}=$ column marginal mean $\quad \bar{X}_{b i}=$ row marginal mean

Computational formula:

1. Calculate $S S_{T}=\operatorname{Sum} X^{2}-G^{2} / N$
2. Calculate $S S_{c e l l s}=T^{2} / n-G^{2} / N$ (overall model)
3. Calculate $S S_{a}=\operatorname{Sum} T_{a}{ }^{2} / n b-G^{2} / N$
4. Calculate ${S S_{b}}=\operatorname{sum} T^{2}{ }_{b} / n a-G^{2} / N$
5. Calculate $\mathrm{SS}_{\mathrm{ab}}=\mathrm{SS}_{\mathrm{cell}}-\mathrm{SS}_{\mathrm{a}}-\mathrm{SS}_{\mathrm{b}}$
6. Calculate $\mathrm{SS}_{\mathrm{E}}=\mathrm{SS}_{\mathrm{T}}-\mathrm{SS}_{\text {cells }}$

Simple effects
Follows a significant interaction - how does one IV and its levels behave at one level of the other IV?

