WORKSHEET 3
Conditionals

3.1 Booleans
- Assume any test is either True / False

- There is default value that returns to False (0 value, empty string), and others return True
o print(bool(1))
o print(bool(-2.0))
o print(bool())
True
True
True
o print(bool

()
o print(bool

(

(

)
0.0))
)

1

e))

o print(bool
o print(bool
False
False
False
False

—_— o~~~

)
)
Fals

3.2 Relational Operators
- Forint and float

Python Meaning Math Notation

< less than <

IA

<= less than or equal

= equal =

1= not equal #

> greater than >

>= greater than or equal >

3.3 String Comparisons

- Forstring

- Letters are sorted by alphabetical order ***lower case > upper case
o print(<)
o print(
o print(>)
o print(
True
False
True
True

- characters have numbers associated with them
o print(ord(‘A"))

3.4 Substrings
- Whether a string is in another string (case sensitive)

o print(in)
True

3.5 Logical Operators
- Binary logical operators (apply 2 Boolean variables)

o and
o Or
- Unary logical operator (for 1 Boolean variable)

o nhot

Operands Logical Operator

A B A and B|A or B
False False False False
True False False True
False True False True
True True True True

o print(True and True)
o print(True and 1 !'= 1)
o print(1 > 2 or True)

o print(not True)

True

False

True

False

3.6 Order of operators
- Relational operators (including in) -> not -> and -> or
o print(not 1 > 2 and 1 > @ or "din" in "coding")
= not False and True or True
= True and True or True
= True or True
= True

3.7 Conditional Blocks
- 1f <condition>:
<block of statements>

o €.0.
* n = int(input))
= if @ <n<6:
. print(
)
= print()

- To decide between alternatives:
- 1f <condition>:
<first block of statements>
- elif:
<second block of statements>
- else:
<alternative block of statements>

-~ at the start of the string (prefix) and $ at the end of the string (suffix)
o sci=""" + sci
o Ssci= sci + '$'
elif ('~comp' in sci) or ('~info' in sci):
print("Computing ftw!")
elif ('y$"' in sci):
print("Au naturel!")

WORKSHEET 4
Sequences

4.1 Strings as sequences
- Python numbers the position of each character within a string, starting with the first character
at position number 0
o Includes spaces and full spots
Charater | Ply/t h|o|n
Index [0 123 4 5 6 7

(@]
o Can work from end of string (-1 index last character)

character P y t h o n

- index -6 | -5 -4 | -3 | -2 | -1
4.2 Indexing
- Access a particular character at a particular position
o S =

o print(s[0])

o print(s[1])
T
h

- Find length of strings

S =

o n = len(s)

o print(n)

o print(len())
17
5

4.3 Slicing (Subscripting)
- Access certain part of substring
o if the start index is O then you can leave it blank
o ifthe end index is the length of the string then you can leave it blank
o does not include last index
[] S =
= print(s[:5])
= print(s[5:])
= print(s[:])
The n
umber is 42.
The number is 42,

4.4 Slicing with steps and direction
- Third no. when slicing indicate how many steps to through the list
- If-1, direction of slice changes
o If beyond string -> empty string returned
= s = "abcdef"
= print(s[::2])
= print(s[2::-1])
= print(s[2:0:-1])
ace
cba
cb

4.5 Lists
- Splicing / concatenated techniques can be applied
- Empty list:
o Empty = []

o my_words = []
o my_costs = [5.0, 12.0, 200000000.59]
o my_jumble = [, 4,) , 51
o print(my_costs)
o [5.0, 12.0, 200000000.59]
4.6 Tuples
- Same as list A, but immuatable (cannot be changed after creation)
- Empty tuples

o Empty = ()
- Nested tuples (second index is to get the element we want from that nested sequence)
o my_tuple= ('name', 3, ['a', 'nested', 'list'], 'age')
o print(my_tuple[2])
o print(my_tuple([2][1])
['a', 'nested', 'list'l]
nested

