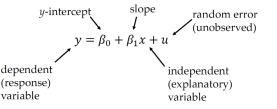
Simple Linear Regression Model

Definition and introduction

- Linear regression is a simple method of examining the relationship between y and x
 - Specifically, we explain variable y in terms of variable x.



Examples: X and Y

- Sales (y) explained by price (x)
- Sales (y) explained by advertising (x)
- Wages (y) explained by education (x)
- Household exp (y) explained by income (x)
- Prices (y) explained by costs (x)

What's the point?

- Suppose x and y are two variables representing some population. The objective is to:
 - Explain y in terms of x;
 - Study how y varies with changes in x;
- Issues:
 - How do we account for other factors that affect y?
 - What is the functional relationship between x and y?
 - How can we ensure that we are capturing a ceteris paribus (causal) result ... if that is the goal?

The Error Term

- u represents factors other than x that affect y (unobserved)
 - randomness in behaviour
 - variables left out of the model
 - departures from linearity
 - errors in measurement

Interpretation

- Interpretation in the simple linear regression model:
 - The goal is to understand how y varies with changes in x:

$$\frac{dy}{dx} = B_1$$
 as long as $\frac{du}{dx} = 0$

- $\frac{dy}{dx} = B_1$ by how much does the dependent variable change if the independent variable is increased by 1 unit
- $\frac{du}{dx} = 0$ interpretation only correct if all other things remain equal when the independent variable is increased by one unit

Conditional mean independence

Question: when is it reasonable to assume that ceteris paribus holds? - Answer: requires conditional mean independence

- That is, since u and x are random variables, we can define the conditional distribution of u given any value of x.
 - In particular, for any x, we can obtain the expected (or average) value of u for that slice of the population described by the value of x.
- Crucial Assumption: E(u|x) = E(u)

EXAMPLE: Soybean yield and fertilizer

- $Yield = B_0 + B_1 fertilizer + u$
- B₁ measures the effect of fertilizer on yield, holding all other factors fixed
- u rainfall, land quality, presence of parasites EXAMPLE: a simple wage equation

 $wage = B_0 + B_1 educ + u$

- B₁ measures the change in hourly wage given another year of education holding all other factors fixed
 - u labor force experience, tenure with current

- Or that the average value of u does not depend on the value of x and 0
 - the average value of the unobservable is the same across all slices of the population determined by the value of x and that the common average is necessarily equal to the average of u over the entire population.
- This gives that u is mean independent of x.
- Further: E(u) = 0
 - As long as the intercept b_0 is included in the equation, nothing is lost by assuming that the average value of u in the population is zero

Zero Conditional mean independence

- Two equations give: E(u|x) = E(u) = 0
 - Aka the zero conditional mean independence assumption

Causality?

When is there a causal interpretation?

When the Conditional mean independence assumption holds:

$$E(u|x)=0$$

- The explanatory variable must not contain information about the mean of the unobserved 0 factors
- However, often unrealistic in simple models such as $wage = B_o + B_1 educ + u$
 - The conditional mean independence assumption is unlikely to hold here because individuals with more education will also be more intelligent on average.

Population Regression Function (PRF)

The conditional mean independence assumption ALSO implies

$$E(y|x) = E(B_0 + B_1 x + u|x) = B_0 + B_1 x + E(u|x)$$

$$= B_0 + B_1 x$$

- This means that the average value of the dependent variable y across the population can be expressed as a linear function of the explanatory variable x.
 - A one-unit increase in x changes the expected value of y by the amount of B_1
- Note: This tells us how Y changes with X on average, 0 (i.e. Expected outcomes), not individual outcomes

Deriving OLS Estimates

- Data is required to estimate the regression model, with a random sample of n observations
- Plot the data, and fit as good as possible a regression line through the data points
- None of our points are on the line, therefore line represents the average with the residual representing the disparity of a point from the line

Ordinary Least Squares

What does as good as possible mean? Regression residuals

$$- \hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Deriving OLS estimator: See Appendix 2A and https://are.berkeley.edu/courses/EEP118/current/deriv e ols.pdf

- Start by defining fitted values for y: $\hat{y}_i = \hat{B}_0 +$ $B_1 x_i$
 - The residual for observation i is thus: $\hat{u}_i =$ $y_i - \hat{y}_i = y_i - \hat{B}_0 + \hat{B}_1 x_i$
- Choose parameters \hat{B}_0 and \hat{B}_1 to minimise: $\min \sum_{i=1}^{n} (\hat{u}_i)^2 = \sum_{i=1}^{n} (y - \hat{B}_0 - \hat{B}_1 x_i)^2$
- Take derivatives and set them equal to 0. This leads to the first order conditions

•
$$\frac{dW}{d\hat{E}_0} = \sum_{i=1}^n -2(y - \hat{B}_0 - \hat{B}_1 x_i) = 0$$

•
$$\frac{dW}{d\hat{E}_1} = \sum_{i=1}^n -2x(y - \hat{B}_0 - \hat{B}_1 x_i) = 0$$

- First solve for \hat{B}_0
- Use first equation recalling $\sum_{i=1}^{n} y_i = N\bar{y}$

$$\begin{array}{ll} & N \hat{B}_0 = N \bar{y} - N \hat{B}_1 \bar{x} \\ & \hat{B}_0 = \bar{y} - \hat{B}_1 \bar{x} \end{array}$$

Solve for \hat{B}_1 using the second of the first order conditions substituting in \hat{B}_0

- $\sum_{i=1}^{n} x_{i} (y_{i} (\bar{y} \hat{B}_{1}\bar{x}) \hat{B}_{1}x_{i}) = 0$
- $\sum_{i=1}^{n} x_i (y_i \bar{y}) = \hat{B}_1 \sum_{i=1}^{n} x_i (x_i \bar{x})$ $\sum_{i=1}^{n} (x_i \bar{x}) (y_i \bar{y}) = \hat{B}_1 \sum_{i=1}^{n} (x_i \bar{x})^2$
- Leaving us with: $\hat{B}_1 = \frac{\sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^n (x_i \bar{x})^2}$, Provided that $\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0$