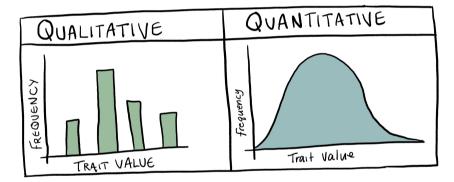

Week 2b

Dominance

- The phenotype displayed, from the interaction of two alleles of a gene in the heterozygote.
- Dominance is the result of the biochemical action of the alleles
- There are three types of dominance relations
 - Complete dominance
 - F1 is the same as the dominant allele
 - No difference between the heterozygote and homozygous dominant
 - o Incomplete dominance
 - The heterozygote is intermediate between the two homozygotes.
 - Also, known as dosage effect which is a result of gene dilution
 - o Co-dominance
 - The heterozygote shows both character states simultaneously
 - Good example is blood types A and B are co-dominant with each other, but are complete dominant to O

Test cross

- A cross where individuals are mated to the homozygous recessive
- The important property that these crosses have is that;
 - The phenotypic ratio in the progeny is the same as the genotypic ratio in the gamete from the other parent.
- Another way to determine the genotype is to self-cross
 - Homozygous cross homozygous = all homozygous
 - Heterozygous cross heterozygous = all different


Pleiotropy

• Pleiotropy occurs when one gene is used for several seemingly unrelated purposes

Week 3b

Quantitative vs Qualitative traits

- Qualitative traits
 - o Inheritance is simple
 - One or few genes
 - Distinct classes classified, counted
 - Independent of environment
 - E.g. Barley row-type, disease resistance
- Quantitative traits
 - o Inheritance is complex
 - Larger number of genes polygenic
 - Continuous distribution measure, calculated
 - Expression influenced by environment
 - E.g. plant height, plant yield

Multigene/Polygenetic inheritance

- Multiple-gene hypothesis; Many genes, each individually behaving, contribute to the phenotype in a quantitative way
 - A simple example of additive effect (incomplete dominance) with genes controlling plant height
 - Each dominant allele means +1 increment in height
 - AA = +2
 - Aa = +1
 - aa = 0
 - With increased phenotypes controlling the variation, plus an environmental effect, one cannot classify phenotype classes, or therefore genotypes. One therefore has to measure the traits
- Number of genotypes is equal to 2n+1, where n = number of gene pairs

Breeding Hybrid Varieties

What are hybrids?

- Crossing between species interspecific hybrids
- Crossing within a species (F1 hybrid varieties)
 - The cross between two different homozygous lines to produce a F1 hybrid that is heterozygous
- Can be for cross-pollinated crops or self-pollinated.

Hybrid varieties

- Grain crops that are commonly hybridised for better vigour and yield
 - Cross pollinated species; corn, sunflower
 - o Self-pollinated species; sorghum, rice and canola
- Hybrid varieties have a yield advantage over non-hybrid varieties
- Uniformity in F1 generation
- May have improved tolerance of abiotic and biotic stresses in the field
- Have advantages in vegetable crops e.g. tomato yield increases, uniformity
- Breeding companies' ability to sell new seeds every season

Hybrid varieties in the cropping industry

- Major move toward development of hybrids over last 5-10 years
- Private funded rather than publicly
- 5% to 20% yield advantage over non-hybrid varieties
- >50% of cultivars marketed are hybrids
- The proportion of hybrids increases each year
- Hybrids have been developed to combine traits including genes for herbicide tolerance and multiple disease resistance genes
- There is minimal interest by companies in the developments of new Open Pollinated lines

Hybrid varieties – issues

- Hybrid seed is more costly than open-pollinated varieties due to high cost of seed production.
- Hybrid seed needs to be bought each year to attain the same potential performance otherwise you are using crossed seeds.
- If hybrid is harvested and re-sown, there is likely to be a significant reduction in performance in the F2 hybrid seed.
- This can include;
 - o Reduced heterosis
 - o Loss of uniformity
 - o Potential segregation for undesirable traits
 - Partial loss of disease resistance.