6. External returns to scale

Assumption of productivity

- Labour productivity (α) not constant
- Unrealistic assumption (theory of comp adv): all industries interchangeable, just specialise in higher relative productivity industry
 - Some industries have positive spillovers (manufacturing)
 - Specialisation need not to be fixed (based on current comp adv)
- Ex: SK's export miracle: overtime, SK shifted export from primary resources (minerals) to manufacturing (electronics, automobiles), exports >40% GNP with manufacturing occupying 90%

Manufacturing

- Reasons for manufacturing:
 - Empirics: manufacturing jobs tend to pay 10% more wages, holding all other constant
 - Empirics: large share of R&D (research development) from manufacturing
- Graham's case for protection: manufacturing has special properties, promote local industry even without natural comp adv
 - Similar to IIP, but *permanent* protection
 - Analysed with ERS

ERS External returns to scale

- Production function: produce α_M units of M per unit of time

$$_{\circ} Q_M = \alpha_M L_M$$

- Manufacturing output = labour productivity *employment of M
- Max output firm can produce given level of inputs
- Diff country size (L size) may = higher productivity
- Marginal product of labour (MPL) productivity

$$O_{O} MPL_{M} = \frac{\mathrm{d}Q_{M}}{\mathrm{d}L_{M}},$$

 $FL_M = \frac{1}{dL_M}$, $MPL_M = \alpha_M$ (α_M constant in linear model)

- \circ $\$ But productivity evolves with industry so α_M should not constant
 - Hiring additional worker = more additional output

Increasing external returns to scale (ERS):
$$Q_M = L_M^2$$

- \circ MPL_M = 2L_M \rightarrow linear in L, MPL increase in L
- More worker in industry = higher labour productivity increase
 - ERS: labour productivity α depends on scale of industry
 - Labour productivity increase in L_M: positive externality

- Decreasing external returns to scale (ERS): $A = \alpha_A L_A^{1/2}$
 - MPL_A = $(\frac{1}{2}\alpha_A)/(\sqrt{L})$ → MPL decrease in L
 - more worker in industry = lower labour productivity increase
- ERS matter:
 - Productivity growth comes from
 - within productivity: better trading, education
 - structural change: movement of labour away low productivity (agriculture commodity) to high productivity (high tech)
 - Some country exhibits negative structural change: move from high to low productivity, ERS industries to low-prod (decrease in prod)
 - Countries need critical mass (big enough L) in industry to competitive protection allow local to achieve scale and acquire comp adv: calculate MPL

Ricardian with ERS

- SK and JP have identical production functions:

 - - Nominal wage: $W = \alpha_A P_A \rightarrow$ worker contribution to revenue

$$\circ \quad Q_M = \alpha_M L_M^2$$

 α constant but non-linear function = labour productivity not constant

Not wage=MPL*P = $2\alpha LP$ bc does not use profit max but 0 profit condition bc ERS

- Nominal wage: $w = \alpha_M L_M P_M$ bc more worker=increase prod in scale, wage increase to keep up with prod (perfect comp market)
 - so L pop size affects comp adv now (as relative P and α use concept of equal w)
- Comparative adv: though same α and production function but diff L pop sizes = diff OC and comp adv
- Calculation: SK has 10L (L_A+L_M), JP has 20L, half in each industry
 - SK L_A=5, SK L_M=5; JP L_A=10, JP L_M=10
 - Autarky relative price of M: same wage (w)
 - $a_M L_M P_M = \alpha_A P_A$

$$\frac{P_M}{P} = \left(\frac{\alpha_A}{\alpha}\right) \left(\frac{1}{I}\right)$$

 $\frac{P_M}{P_A} = \left(\frac{\alpha_A}{\alpha_M}\right) \left(\frac{1}{L_M}\right) \rightarrow \text{OC of M (relative price of M) depends } L_M$

- Higher L_M (higher prod) = lower OC of M (lower autarky relative price)
- $\circ \quad \text{Let } \alpha_{M} = \alpha_{M}^{*} = 1 \text{ and } \alpha_{A} = \alpha_{A}^{*} = 1$
 - $L_M = 5$ in South Korea $\longrightarrow P_M/P_A = 0.2$
 - $L_M^* = 10$ in Japan $\longrightarrow P_M^*/P_A^* = 0.1$
 - JP higher employment in M = comp adv even worker not inherently more prod

- If M is special and more desired and if increasing ERS in M: smaller country = comp disadv
- If increasing ERS → smaller countries should consider protect local industry
 - *BUT L size *does not* guarantee comp adv in increasing ERS industry (if has sufficiently unproductive labour can have lower OC=comp adv bc in relative terms)
- If decreasing ERS → larger L = less productive = lower OC in that industry

Protection pros and cons

- Empirics: if protection is necessary, do the following
 - Aim to achieve dynamic efficiency via international competitiveness (make export globally competitive)
 - Provide flexibility so allow private initiative to flourish
 - Obtain and continuously update info to judge potential comp adv (SK: close relationship between gov and exporters, so allow info flow)
 - \circ $\,$ Only limited number of industries should be targeted $\,$
- Against protection:
 - Protection means higher prices (lower CS)
 - o OC in protection expenditure (subsidy and not healthcare education)
 - Embeddedness: needs to be interaction between private and public sectors throughout the process
 - Bureaucrats need to be in between arms-length relationship and full capture (or corruption scandals)
 - Discipline: must have way to punish under-performers or disengage if policy not working
 - Use automatic sunset clauses or establish binding targets (achieve specific goals in exchange for export protection)
 - Accountability: must have way to hold relevant public agency accountable
 - Cannot use other reasons to permanently fund the industries

7. Heckscher-Ohlin model

Setup

- Country export things not higher relative productivity in: Brazil biggest exporter of soybean – not the most productive country
- Other reason for trade patterns: relative endowment
 - Two countries: Brazil and China.
 - Two products: manufacturing and agriculture
 - Two factors of production.
 - Labour (L) \bigcirc Land (K)

Ricardian: only 1 factor of production

- Countries have diff factor endowments:
 - Brazil has L units of labour and K units of land
 - China has L* units of labour and K* units of land

Assumptions

Adding to Ricardian

- 1) B is relatively land-abundant and C is relatively labour-abundant
 - Relatively: compare land to labour ratio of B and that of C, B>C
- $\frac{K}{L} > \frac{K^*}{L^*} \rightarrow \text{not absolute difference}$
- 2) Agriculture is relatively land-intensive
 - \circ a_{ij} : amount of factor i needed to produce product j

$$\frac{a_{KA}}{a_{KM}} > \frac{a_{KM}}{a_{KM}}$$

- Agriculture higher land-labour ratio: *aLA* alm
- Abundance: compare countries; intensity: compare industries
- Ex: M needs 20 workers and 5 land (needs 4 times worker as land), A needs 5 workers and 10 land (needs 2 times as land), A is relatively land intensive
- 3) Production technology used to produce two products identical across countries
 - Ricardian: diff α (prod function parameter) = diff comp adv
 - HO: no diff α prod function (tech) not source of comp adv but endowment
 - B and C have same equilibrium K/L ratios in both industries
 - Just diff factors of production
- 4) Consumer preferences same across countries
- 5) Workers fully mobile across industries within a country: no cost from changing job
- 6) Products traded freely, but workers immobile across countries
- 7) Market for both factors of production must clear: total supply demand equal (for land and worker)

Heckscher-Ohlin theorem

- As both market for factors must clear -
- Labour market

$$L_A + L_M = L$$

- $a_{LA}A + a_{LM}M = L_{\pm}$
 - *a_{LA}* and *a_{LM}*: labour required to produce one unit of output (A or M)
 A and M: total output of products

 $A=0 \rightarrow \text{production}$

 $\circ \quad a_{LM}M = L - a_{LA}A$ $M = \left(\frac{1}{2}\right)L - \left(\frac{a_{LA}}{2}\right)$

$$\overline{M} = \frac{L}{a_{IN}}$$

capacity of M: a_{LM} , each worker produce a_{LM}

• \overline{M} increases in L labour (M labour-intensive)

- Land market

_

0

- $\circ \quad a_{KA}A + a_{KM}M = K$
 - a_{KA} and a_{KM} : land required to produce one unit of output (A or M)
 - $a_{KA}A$ is the total land used in A_{i} , same for $a_{KM}M$

$$a_{KA}A = K - a_{KM}M.$$

$$A = \left(\frac{1}{a_{KA}}\right)K - \left(\frac{a_{KM}}{a_{KA}}\right)M$$

$$If allocate all worker to A ($$

■ If allocate all worker to A (complete specialise): M=0 → production $\overline{A} = -\frac{K}{K}$

capacity of A: a_{KA} , each land produce a_{KA}

• Ā increases in K land (A land-intensive)

- Relative production capacity of A: A/M ratio

$$\frac{\overline{A}}{\overline{M}} = \frac{K/a_{KA}}{L/a_{LA}}$$

$$= \left(\frac{K}{L}\right) \left(\frac{a_{LA}}{a_{KM}}\right)$$

$$\circ \text{ Home (B):} \qquad \frac{\overline{A}^*}{\overline{M}^*} = \left(\frac{K^*}{L^*}\right) \left(\frac{a_{LA}^*}{a_{KM}^*}\right)$$

$$\circ \text{ Foreign (C):} \frac{\overline{M}^*}{\overline{M}^*} = \left(\frac{K^*}{L^*}\right) \left(\frac{a_{LA}^*}{a_{KM}^*}\right)$$

- Assume same prod tech so $a_{LA} = a_{LA}^*$ and $a_{KM} = a_{KM}^*$

$$\frac{K}{L} > \frac{K^*}{L^*} \longrightarrow \frac{\overline{A}}{\overline{M}} > \frac{\overline{A}^*}{\overline{M}^*}$$

- Assume B is more relatively land-abundant: ^L o B prod capacity of A > C prod capacity of A
 - bc B more relatively land-abundant, C is more labour-abundant (so adv in M)