- Starch: A polymer of glucose molecules
  - o Stored by plants as granules  $\rightarrow$  accessed via hydrolysis
- Glycogen: A highly branched polymer of glucose
  - o Stored my animals, mainly in the liver and muscle cells
  - Hydrolysis of glycogen releases glucose, however cannot system animal for long periods of time

### **STRUCTURAL POLYSACCHARIDES**

- Cellulose: A linear polymer of glucose
  - o Found in plant cell walls
- Chitin: A polymer of glucose with nitrogen groups.
  - o Found in the **exoskeletons** of arthropods (insects, spiders, etc.)

## **Macromolecules** – Lipids

## LO3: BRIEFLY DESCRIBE THE GENERAL STRUCTURAL FEATURES OF LIPIDS

- Triacylglycerol (TAG): Three fatty acid molecules join to glycerol by an ester bond
- Fatty acids can vary in length and in the number/position of double bonds
- Saturated fatty acids: NO DOUBLE BOND between carbons in their hydrocarbon chain (i.e. butter)
- Unsaturated fatty acids: **DOUBLE BOND** between carbons, causing **kinks** (i.e. oleic acid)

#### LO4: LIST SOME EXAMPLES OF MEMBERS BELONGING TO LIPIDS

#### **PHOSPHOLIPIDS**

- Essential to cells make up the **cell membrane**
- Consists of a hydrophilic (polar) head group and two hydrophobic (non-polar) tails
- Similar structure to TAG, but a phosphate group and polar (choline) group replace one fatty acid chain

#### **STEROIDS**

- Carbon skeleton consists of four fused rings
- Cholesterol is a steroid found in animal cell membranes

#### LO5: DESCRIBE SOME KEY FUNCTIONS OF THESE MEMBERS OF LIPIDS

- Energy storage and transport: Fats (triacylglycerols or TAGs)
- Structure: Phospholipids, sterols
- Chemical Messengers: Steroids (e.g. cholesterol found in membranes, glycolipids)
- Coverings: waxes

## **Macromolecules – Proteins**

#### LO3: BRIEFLY DESCRIBE THE GENERAL STRUCTURAL FEATURES OF PROTEINS

- Proteins are **polymers of amino acid** monomers → linked by peptide bonds → polypeptide → **folded** into a **specific 3D** structure (determines the function)
- Peptide bond is formed by a **dehydration reaction** between **carboxyl group** of one amino acid and the **amino group of the next**
- 20 different amino acids used to build thousands of proteins

### **PROTEIN STRUCTURE**

- Primary Structure: A protein's unique sequence of amino acids
- Secondary Structure: The conformation adopted by local regions of the polypeptide chain
  - o **H-bonds** from C=O and N-H provide stability between atoms of the polypeptide backbone
  - o Alpha helix: Delicate coil held together by H-bonds
  - o Beta pleated sheet: One continuous peptide with shows direction (arrows)
    - Anti-parallel (turns)

- Parallel (loops)
- Tertiary Structure: Overall shape of the protein
  - o 3-D shape is stabilized by interactions between side chains
    - Hydrophobic interactions, H-Bonds, Ionic or electrostatic bonds
  - o Fibrous 3D protein structures: Long, extended and rod-like
    - Collagen, fibroin, keratin, fibrin
    - Are **soluble** in water
    - Mostly alpha-helices
  - o Globular protein structures
    - Complex, compact and fold back on themselves (e.g. hemoglobin)
    - Can contain alpha-helices and beta-sheets
    - Hydrophobic core and hydrophilic surface
- Quaternary Structure: Overall shape of the protein
  - o Polypeptide chains can assemble into multi-subunit structures → in most cases, they are held together by **non-covalent** bonds

#### **DENATURATION**

• Denaturation: Conditions such as heat/pH disrupt the secondary/tertiary structure of protein and it loses its function → unwind the long polypeptide chain

#### LO4: LIST SOME EXAMPLES OF MEMBERS BELONGING TO PROTEINS

- E.g. hemoglobin
  - o 4 hemoglobin molecules interacting and joining together to carry oxygen in bloodstream
- E.g. Collagen
  - o Fibrous protein with 3 identical helical polypeptides
  - o Connective tissue in skin, bones, tendons, ligaments

#### LO5: DESCRIBE SOME KEY FUNCTIONS OF THESE MEMBERS OF PROTEINS

| PROTEIN    | FUNCTION                                                                                            |
|------------|-----------------------------------------------------------------------------------------------------|
| Structural | Support – i.e. <b>keratin</b> is the protein of hairs, feathers, and skin. <b>Collagen</b> provides |
|            | elastic framework                                                                                   |
| Transport  | Transport of substances – i.e. <b>hemoglobin</b> transports oxygen from lungs to body               |
| Hormonal   | Coordination of organism's activities – i.e. <b>insulin</b> regulates blood-sugar conc.             |
| Defense    | Protection against disease – i.e. <b>antibodies</b> destroy viruses and bacteria                    |

## **Macromolecules – Nucleic Acids**

#### LO3: BRIEFLY DESCRIBE THE GENERAL STRUCTURAL FEATURES OF NUCLEIC ACIDS

- Repeating sugar-phosphate units
- Nitrogenous bases A, T, C, G (4 building blocks) where A-T and G-C
  - o Purine: double ring
  - o Pyrimidine: single ring
- Deoxyribose sugar in DNA (Deoxyribonucleic acid), ribose sugar in RNA (ribonucleic acid)
- Both the sugars are pentoses (5 carbons)
- A phosphate group is added to the 5' carbon of the sugar and the base is added to the 1' carbon

#### LO4: LIST SOME EXAMPLES OF MEMBERS BELONGING TO NUCLEIC ACIDS

#### DNA

- Contains **thymine** (not Uracil)
- Sugar = deoxyribose
- Double-stranded

- Contains Uracil instead of thymine
- Sugar = ribose
- Single-stranded
- **H-bonding** between bases directs base pairing
  - o **TWO** H-Bonds between A and T
  - o **THREE** H-Bonds between G and C (more stable)
- DNA strands in a double-helix are anti-parallel
  - Strands are orientated in opposite directions (complementary), and have polarity
  - o Sequence is always written from 5' to 3'



#### LO5: DESCRIBE SOME KEY FUNCTIONS OF THESE MEMBERS OF PROTEINS

- DNA is the primary form of genetic material stores hereditary information
- RNA functions:
  - o mRNA interacts with ribosomes to ensure a specific protein is translated
  - o tRNA ensures a specific amino acid is incorporated into a protein by the ribosome
  - Other RNA is involved in the **regulation of gene expression**

## **DNA** ORGANIZATION: CHROMOSOMES

- DNA is organized into chromosome, where each chromosome is a single DNA molecule
- Chromatin: complex of DNA and proteins that form chromosomes in the nucleus

# Cell Integrity

#### LO1: DESCRIBE THE STRUCTURE OF CELL MEMBRANES AND THEIR FUNCTION IN CELL INTEGRITY

- Membranes are selectively permeable, boundary between cell and surroundings, controlling traffic
  - o 1935, Davson-Danielli Model: Protein are components of plasma membrane,
  - o 1972, Singer-Nicolson Fluid Mosaic Model: Proteins are embedded in the lipid bilayer

#### Fluid Mosaic Model

- Peripheral protein: help the cytoskeleton attach to the lipid bilayer
- Integral membrane protein
- Cholesterol: help to make the lipid bilayer semi-solid
- Carbohydrates: recognition within cells of other cells
- The position of the protein domains relative to the membrane is fixed after the protein is inserted into the plasma membrane
- Sidedness: asymmetrical distribution of proteins, CHO, and lipids on two sides of membrane

### LO2: DESCRIBE THE DIFFERENT COMPONENTS OF THE CELL MEMBRANE THAT ARE IMPORTANT IN MAINTAINING CELL INTEGRITY

- Lipids: Phospholipids and cholesterol (0-25%)
  - o Fluids and other lipids help to make it semi-solid (Cholesterol) which are inserted between the phospholipids
- Proteins: Peripheral and Integral
  - o Transmembrane: Proteins that span the membrane with different domains on each side of membrane
  - o Fluidity: Rapid movement of lipids and proteins laterally in the plane of the membrane
    - Plasma proteins of mouse cell and human cell were labelled with different markers → cells fused → mixing of mouse and human proteins
    - Fluorescent Recover After Photo-bleaching (FRAP): Integral proteins tagged with fluorescence → Non-photobleached proteins move to the photobleached site
    - Lipid movement of proteins slower in lipid rafts
- Carbohydrates: Glycolipids and Glycoproteins
  - o Addition of sugar groups allows the cells to be recognized by other cells/proteins