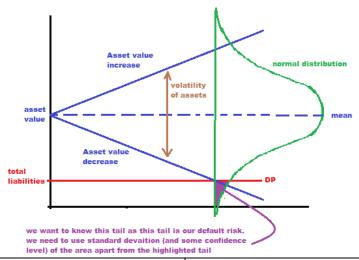
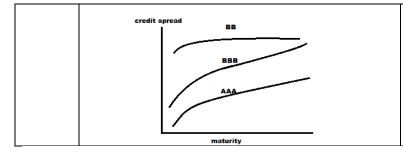
Default is the potential that an obligor (commonly a borrower) will fail to meet its obligations in accordance with agreed terms. A company will default if the value of its assets fall below the book value of liabilities. Thus default is a function of:

- The value of the assets
- The volatility of the assets
- The extent of leverage: Leverage is the relationship between debt and equity.

Calculating Distance to Default (D-D):

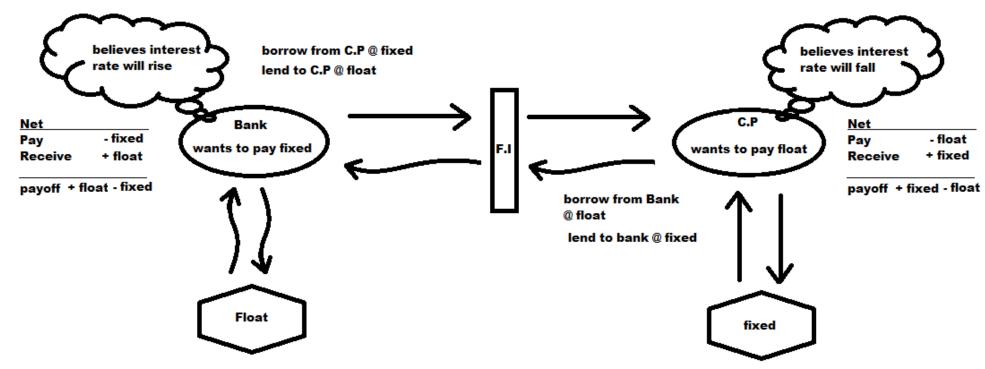

- **D-D** is the number of standard deviations that asset values are currently "away" from default'
- Calculated as: D-D = (Ma DP) / (Ma x Avol)

Where:


Avol = Asset Volatility 1 standard deviation in observed changes in asset values (Ma).

Ma = Market Value of Assets = MVE - MVL

The EDF is based on the history of default for firms with same std. deviation away from default over the timeframe.



	Description	Formula/calculation	Limitation
Credit	The margin compared with the risk free rate, that is	C= k – i	 The absence of market
Spreads	designed to compensate (like the premium) the lender	Where	rates for the risky
	or investor for the risk of default.	k = Yield on credit risky security i=Yield corresponding risk free security	securities
	 Can only Increase above or fall down to the risk free rate (not below it). The Term Structure of Credit Spreads is not parallel uniform function Risk of default increases with time 	Function of: (1+i)=p(1+k) The expected probability of default = pd = (1-p) where p = Probability of Repayment (1+i)=(1-p)(1+k)	 The absence of market rates for risk free securities
	 The longer the time horizon or time to maturity, the larger the volatility and the wider 	Note: The cumulative Pd will be the product of marginal Pd's in each period	Sparse data points
	the credit spread. Credit spread and hence the market sets the	{Cpd= 1 -(p1 x p2 x p3)}	 Inefficient or illiquid markets
	probability of default	In the event that the obligor defaults; the bank will receive payment (A) by way of recovery: $A = \lambda(1+K)$	 Frictions in trading markets
		where λ =expected recovery rate Therefore:	 Liquidity spreads
		$(1+i)=\{(1-p) \times \lambda(1+K)\} + \{p(1+k)\}$	

To calculate the Pd for each period we need to calculate the forward rates (f) for i and k. The formula below (for i in this case) can be used:

$$1 + f n/m = {(1 + im)m} / {(1 + in)n}$$
 solve for f n/m

