Default is the potential that an obligor (commonly a borrower) will fail to meet its obligations in accordance with agreed terms. A company will default if the value of its assets fall below the book value of liabilities. Thus default is a function of: - The value of the assets - The volatility of the assets - The extent of leverage: Leverage is the relationship between debt and equity. ## Calculating Distance to Default (D-D): - **D-D** is the number of standard deviations that asset values are currently "away" from default' - Calculated as: D-D = (Ma DP) / (Ma x Avol) Where: Avol = Asset Volatility 1 standard deviation in observed changes in asset values (Ma). Ma = Market Value of Assets = MVE - MVL The EDF is based on the history of default for firms with same std. deviation away from default over the timeframe. | | Description | Formula/calculation | Limitation | |---------|--|---|--| | Credit | The margin compared with the risk free rate, that is | C= k – i | The absence of market | | Spreads | designed to compensate (like the premium) the lender | Where | rates for the risky | | | or investor for the risk of default. | k = Yield on credit risky security i=Yield corresponding risk free security | securities | | | Can only Increase above or fall down to the risk free rate (not below it). The Term Structure of Credit Spreads is not parallel uniform function Risk of default increases with time | Function of: (1+i)=p(1+k) The expected probability of default = pd = (1-p) where p = Probability of Repayment (1+i)=(1-p)(1+k) | The absence of market
rates for risk free
securities | | | The longer the time horizon or time to
maturity, the larger the volatility and the wider | Note: The cumulative Pd will be the product of marginal Pd's in each period | Sparse data points | | | the credit spread. Credit spread and hence the market sets the | {Cpd= 1 -(p1 x p2 x p3)} | Inefficient or illiquid markets | | | probability of default | In the event that the obligor defaults; the bank will receive payment (A) by way of recovery: $A = \lambda(1+K)$ | Frictions in trading markets | | | | where λ =expected recovery rate Therefore: | Liquidity spreads | | | | $(1+i)=\{(1-p) \times \lambda(1+K)\} + \{p(1+k)\}$ | | To calculate the Pd for each period we need to calculate the forward rates (f) for i and k. The formula below (for i in this case) can be used: $$1 + f n/m = {(1 + im)m} / {(1 + in)n}$$ solve for f n/m