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Probability Axioms

1. Non-negativity

2. Unitarity

3. Countable
additivity , where  is a sequence of mutually

disjoint events

Probability
Properties  Proof

Probability
of empty set

 is mutually disjoint set, so by (3), 
, which only holds if 

Finite
additivity , where 

 is a finite set of
mutually disjoint events

Let  be mutually disjoint, construct .
Since  and by countable additivity, 

Complement
rule

Monotonicity If  then If , then , which is disjoint, thus 
 since probabilities are non-

negative

Probability
lies in unit
interval

, thus 

Addition
theorem

 And 
, eliminate 

Continuity (i) Let  be an increasing
sequence of events, namely, 

 , and define 
. Then 

(ii) Let  be a decreasing
sequence of events, namely, 

 , and define 
. Then 

 

Classical Probability
Model  

Criteria (i) The sample space  is a finite set, consisting of  outcomes
(ii) The probability of each outcome in  occur equally likely. 

For any event 



Conditional probability  

Conditional probability

Multiplication theorem

Positive and negative relations

Law of Total
Probability & Bayes’
Theorem  

Law of Total Probability , where  is a partition

of 

Bayes’ Theorem
, for a given partition 

Bayes' theorem for the
partition 

Partition of The set of events  is a partition of  if they are mutually disjoint
and collectively exhaustive : 

Law of Total Probability and Bayes' theorem  

Intuition for the Law of Total Probability: We think of an event as the effect /result due to one of 
several distinct causes/reasons. In this way, we compute the probability of the event by 
conditioning on each of the possible causes and adding up all these possibilities. We interpret  as 
an effect and interpret a partition  as the possible distinct causes leading to the effect .

Tree Diagrams  

A tree diagram can be used to represent a conditional probability space
Each node represents an event, and each edge is weighted by the corresponding probability (the 
root node is the certain event, with probability of one)
Each set of sibling branches is a partition of the parent event, and sums to one
The Law of Total Probability is equivalent to reaching the 'effect' (leaf node) though any of the 
possible 'causes' (intermediary branches). Multiply along the branches and add the result.
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Random
Variables  

Random Variables A random variable maps outcomes of the sample space to a real number.

State space The state space of a random variable is the range of , the set of all possible
values of .

Events of a
random variable

Events of a random variable for a given , are the events in the sample
space that are mapped by the random variable to the value .

Probability of an
event

Distribution of a
random variable

Probability Mass Functions (pmf)  

Discrete random variables A discrete r.v. is one for which the state space  is countable

Probability Mass Functions The probability mass function of  maps the outcomes of 
to a probability. 

Probability of a given event in the
sample space

Properties of a PMF 1. 
2. 

PMF from CDF , for 

3 Random Variables  

Discrete Random Variables  

Where the state space  is countable
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Geometric distribution

Sample space and random variable state space

PMF , where 

CDF

Expectation

Variance

Memoryless property

Geometric distribution  

The number of failures (  or ) before the first success in an infinite sequence of independent 
Bernoulli trials with probability of success .

Derivation: , ,  
and so on.

Warning: Careful of the parametrisation of the geometric distribution! MAST20004 Probability uses the 
number of failures ( ) before the first success, but a common alternate parametrisation is the number 
of trials before the first success ( ). 
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Poisson distribution

State space

PMF
, where 

Time-rate of events If , then 

Expectation

Variance

General Poisson
approximations

1. , where  large,  small
and need not be equal.
2.  are ‘weakly dependent’
Then, 

Poisson approximation to the
Binomial

For a binomial , for  small.

Convolution

Derivation: We can consider taking the Binomial pmf with  and shrinking the time period to  

by taking :  

Poisson Modelling:

The occurrence of one event does not affect the probability that a second event will occur. That is, 
events occur independently.
The average rate at which events occur is independent of any occurrences. For simplicity, this is 
usually assumed to be constant, but may in practice vary with time.
Two events cannot occur at exactly the same instant; instead, at each very small sub-interval exactly 
one event either occurs or does not occur.

Poisson Approximations  

Conditions:

1. The random variable  can be written as the sum of  Bernoulli variables with parameter : 
. Note that the Bernoulli trials need not be fully independent, 

nor do they need to share the same success probability .
2. The number of Bernoulli variables ( ) is very large, each  is very small, and  is of 

’normal’ scale.
3. The dependence among the random variables is weak, in the sense that for each , the 

number of random variables that are dependent on (related to)  is much smaller than .

Then, we can approximate the pmf of  by the Poisson distribution with parameter .
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Beta distribution

PDF

Mean

Variance

Moments

Beta function  

Beta function

Beta and Gamma function

Beta distribution  

Beta function  
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Exponential distribution

PDF

CDF

Expectation

Variance

Memoryless property

As special case of Gamma Distribution

Exponential distribution  

Consider infinite independent Bernoulli trials in continuous time with rate , then  is the time 
until the first success. Exponential distributions are often used to model the waiting time between 
the occurrence of events.

The parameter  is naturally interpreted as the average number of arrivals per unit interval. More 
generally, we can always regard  as the rate at which the underlying event occurs per unit time. 

The Exponential distribution is the continuous time analogue of the Geometric (measures time 
until first success)

Note: The geometric distribution is a particular case of the gamma distribution. 

Intuition for rate parameter:  If you receive phone calls at an average rate of 2 per hour, then you can 
expect to wait half an hour for every call.

Intuition for memoryless property: When  is interpreted as the waiting time for an event to occur 
relative to some initial time, this relation implies that, if  is conditioned on a failure to observe the 
event over some initial period of time , the distribution of the remaining waiting time is the same as 
the original unconditional distribution. For example, if an event has not occurred after 30 seconds, the 
conditional probability that occurrence will take at least 10 more seconds is equal to the unconditional 
probability of observing the event more than 10 seconds after the initial time. 
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Bivariate Joint
PDFs

Bivariate Joint PDF

Probability of a
rectangular region

Unitarity

Joint CDF to joint
PDF

Joint PDFs to
Marginal PDFs

Bivariate Joint CDFs

Bivariate Joint CDF

Non-negativity

Limit to infinity

Continuous Bivariate Random Variables  

Warning:

The joint pdf uniquely determines the marginal pdf’s, but the converse is not true. Marginal pdf’s 
do not determine the joint distribution.
To find the marginal PDFs from the Joint PDFs, we integrate the other variable out, meaning that 
our bounds on our integral will be in terms of the other variable, and not in terms of the marginal 
variable.

Recovering joint pdf from joint cdf by partial differentiation  

Let the inner integral , then . Thus, 

, and thus .
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General
bivariate
normal
distributions  

General
bivariate
normal
distributions

 where 

Joint pdf

Marginal
distributions
of general 

 and 

Conditional
distributions
of general 

 where 

Linear
transformation

If  is a bivariate normal random variable and , then  is also a
bivariate normal random variable.

Decomposition
of the bivariate
normal

Decomposition
of the
univariate
normal

Constructing
bivariate
normals from
standard
normals 

Geometry of Standard Bivariate normal distributions

The peak of the graph is at the origin 
The value of  decays to zero in all directions as  approaches infinity.
positive relationship if  , negative relationship if 
As , the relationship between  and  becomes stronger.

Marginal distributions from Standard bivariate normal distribution

It is in general not possible to reconstruct the joint distribution from the marginal distributions.
We know that the marginal distributions of  are both standard normal distribution. However, 
the converse is not true in general – the joint distribution of two standard normal random variables 
needs not be bivariate normal.
In particular, note that  and  does not imply that .

Sufficient condition to determine whether  is a bivariate normal random variable: 



Conditional Expectation  

Conditioning on a
random variate

Conditioning on a
random variable

Define  (as above), a number in terms of .
Then , the function composed with the random
variable , itself a random variable

Law of Total Expectation

Law of Total Expectation
(applied)

Multivariate case: 
Products: 
In terms of probability functions:

Conditional expectation
of an event 

Conditional Variance  

Law of Total Variance

Conditional variance of an event 

Convolutions of independent
random variables

Discrete convolution formula

(Where  are independent and non-negative)

Continuous convolution formula

Convolutions of independent random variables  

Warning: Careful with convolution limits or terminals in the continuous case.
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Moment
generating
function (mgf)

Moment
generating
function (mgf)

Uniqueness
theorem

Let  be two random variables. Suppose that  are both well
defined and equal in some neighbourhood of the origin . Then  and  have the
same distribution.

Relation
between the pgf
and the mgf

Convolution
theorem for
mgfs

Linear
transformation

Moments via
Taylor
expansion

Computing
moments

Computing
central moments

Expectation

Variance

Random Sums using the pgf  

Let  be a sequence of  independent identically distributed random variables, where  

is an independent non-negative discrete random variable. Let  be the random sum. Then the 

generating function of  is ; since 
, by definition of 

, definition of , law of total expectation, using the convolution theorem, and definition of , 
respectively.

Moment generating function (mgf)  

Arbitrary random variable. The -th coefficient of the mgf is the -th moment of 
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