Week 1: Introduction to Research Methods

Lecture notes: cautionary tale of Simpson's paradox

Introduction to Simpson's paradox

- Simpson's paradox: phenomenon in probability and statistics whereby a trend occurs in several different groups of data but then disappears or reverses when these groups are combined.
- Berkeley postgraduate admissions (1973):
- In the past, people investigated the gender balance of Berkeley's admissions.
- It was discovered that there were a lot more men than women, with too much data supporting this for it to be pure chance.

	Applicants	Admitted
Men	8442	$\mathbf{4 4 \%}$
Women	4321	$\mathbf{3 5 \%}$

- The University of California, Berkeley, set out to further investigate the culprits for supposedly gender discrimination after the data raised a lot of eyebrows.
- They did this by breaking open the data into different departments to see which ones were responsible for gender bias.
- Interestingly, they found that out of six departments, four of them accepted more women than men - there was a gender bias, but it was in favour for women.

Department	\# of men	\# of women	Men accepted	Women accepted
A	825	108	62%	$\mathbf{8 2 \%}$
B	560	25	63%	$\mathbf{6 8 \%}$
C	325	593	$\mathbf{3 7 \%}$	34%
D	417	375	33%	$\mathbf{3 5 \%}$
E	191	393	$\mathbf{2 8 \%}$	$\mathbf{2 4 \%}$
F	393	341	6%	7%
Total	8442	4321		

- Therefore, the aggregated data told a different story from the ungrouped data - classic case of Simpson's paradox: when grouped-up data demonstrates the opposite trend of the ungrouped data.
- The truth was that women were not being discriminated against. Rather, a large proportion of them were applying to a low-acceptance rate department
while a large proportion of men were applying to a high-acceptance rate department, resulting in skewed overall results.

Lessons for potential researchers

- Data can be sneaky:
- Aggregated data: refers to the overall data by combining multiple groups of data. Can show a bias in one direction.
- Disaggregated data: refers to the separate data of different data groups, which can show no bias or a bias in an opposite direction from the aggregated data.
- Statistics and good data analysis:
- Helps keep researchers on the right track.
- Reduces the chances of researchers drawing the wrong conclusions from data.
- Psychological research:
- Important to understand research methods.
- Important to understand data analysis.

Video notes: introduction to R

Operators

- \mathbf{R} is a statistical programming language used to:
- Perform basic calculations.
- Run statistical analyses.
- Draw graphs.
- Write programs.
- Etc.
- Pros of R:
- Open source and costs nothing.
- Very powerful for statistics.
- Rapidly becoming the most popular data analysis tool.
- An introduction to programming, which is a valuable skill.
- Operators:
- Used to carry out a particular kind of operation.
- Numerical operators: used to carry out simple calculations.
- Logical operators: used to provide a TRUE or FALSE response or for more complex comparisons.

Operator	Type	Description	Example
+	Numerical	Addition	$5+2$
-	Numerical	Subtraction	$5-2$
$*$	Numerical	Multiplication	$2^{*} 2$

/	Numerical	Division	8/2
\wedge	Numerical	Power	$3^{\wedge} 3$
==	Logical	Equality	$1+1==2$
!=	Logical	Inequality	$1+1$! $=3$
>	Logical	Greater than	$5>3$
$<$	Logical	Less than	$5<8$
$>=$	Logical	Greater than or equal to	$5>=5$
<	Logical	Less than or equal to	$3<=3$
\&	Logical	And	
1	Logical	Or	
!	Logical	Not	

Functions

- Functions:
- Involve most of the other things that are not operators as there are not enough symbols on the keyboard to perform everything one might need to do.
- Set of statements organised together to perform a specific task.

Function	Description	Example
sqrt()	Square root	$\operatorname{sqrt}(4)$
round()	Round to nearest whole number	$\operatorname{round}(5.8)$
$\log ()$	Logarithm	$\log (4)$
$\exp ()$	Exponentiation	$\exp (4)$
$\operatorname{abs}()$	Absolute value	$\operatorname{abs}(-4)$

- Argument:
- Every function has this.
- Functions can be thought of as recipes and arguments like ingredients, such that the recipe combines the right ingredients in a specific way.
- Arguments: go within the brackets right after a function.
- Default values: many arguments have these, which are used when the user does not tell R what value to use (e.g., the default number of digits to round to is zero).
- Functions:
- Many can take more than one argument, which are separated with commas.
- Arguments: most also have names and can be used when typing commands in any order (e.g., round $(3.1415,2)$ is the same as round(digits $=2, x=3.1415$).
- Equal signs: only one (=) is used inside functions, while two (==) is used to compare two things.
- Silent fail: occurs when the input does not make sense, leading to the default value being used without warning.
- Nesting functions:
- Just as a recipe can use the output of other recipes as ingredients, so too can functions use the output of other functions as arguments.
- Hence, functions can take other functions as arguments (e.g., sqrt(round(4.45)).
- Important to note that the parentheses are balanced.
- Navigation tips:
- Tab autocomplete: for example, if the user types 'ro' and then hits tab, a window will be brought up showing possible commands the user might want to use (such as 'round').
- Help function: if the user wants to know more about a function, they can use this function as help().

Variables

- Variables:
- Likened to a box as it could store things.
- Stores values (e.g., variable <- 'word').
- Note that variable names are not in quotes.

Variable type	Stores	Example
Numeric	Numbers	NumericVar <- 4.78
Character	Text (via speech marks)	CharacterVar <- ‘hi'
Logical	True/false values	LogicalVar <- TRUE

- Creating and using variables:
- Used to store and label information.
- Refer to the contents of a block of computer memory.
- Use the 'assignment operator' (<-) to create one.
- Variables in R behave the same way as their values do.
- By assigning a new value, the old one will disappear since variables only contain one thing.

