Week 1: Introduction to Research Methods

Lecture notes: cautionary tale of Simpson's paradox

Introduction to Simpson's paradox

- **Simpson's paradox**: phenomenon in probability and statistics whereby a trend occurs in several different groups of data but then disappears or reverses when these groups are combined.
- Berkeley postgraduate admissions (1973):
 - In the past, people investigated the gender balance of Berkeley's admissions.
 - It was discovered that there were a lot more men than women, with too much data supporting this for it to be pure chance.

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

- The University of California, Berkeley, set out to further investigate the culprits for supposedly gender discrimination after the data raised a lot of eyebrows.
- They did this by breaking open the data into different departments to see which ones were responsible for gender bias.
- Interestingly, they found that out of six departments, four of them accepted more women than men – there was a gender bias, but it was in favour for women.

Department	# of men	# of women	Men accepted	Women accepted
А	825	108	62%	82%
В	560	25	63%	68%
C	325	593	37%	34%
D	417	375	33%	35%
E	191	393	28%	24%
F	393	341	6%	7%
Total	8442	4321		

- Therefore, the aggregated data told a different story from the ungrouped data – classic case of *Simpson's paradox*: when grouped-up data demonstrates the opposite trend of the ungrouped data.
- The truth was that women were not being discriminated against. Rather, a large proportion of them were applying to a low-acceptance rate department

while a large proportion of men were applying to a high-acceptance rate department, resulting in skewed overall results.

Lessons for potential researchers

- **Data** can be sneaky:
 - *Aggregated data*: refers to the overall data by combining multiple groups of data. Can show a bias in one direction.
 - *Disaggregated data*: refers to the separate data of different data groups, which can show no bias or a bias in an opposite direction from the aggregated data.
- **Statistics** and good data analysis:
 - Helps keep researchers on the right track.
 - Reduces the chances of researchers drawing the wrong conclusions from data.
- Psychological research:
 - Important to understand research methods.
 - Important to understand data analysis.

Video notes: introduction to R

Operators

- **R** is a statistical programming language used to:
 - Perform basic calculations.
 - Run statistical analyses.
 - Draw graphs.
 - Write programs.
 - Etc.
- **Pros of R**:
 - Open source and costs nothing.
 - Very powerful for statistics.
 - Rapidly becoming the most popular data analysis tool.
 - An introduction to programming, which is a valuable skill.
- Operators:
 - Used to carry out a particular kind of operation.
 - *Numerical operators*: used to carry out simple calculations.
 - *Logical operators*: used to provide a TRUE or FALSE response or for more complex comparisons.

Operator	Туре	Description	Example
+	Numerical	Addition	5+2
-	Numerical	Subtraction	5-2
*	Numerical	Multiplication	2*2

/	Numerical	Division	8/2
^	Numerical	Power	3^3
==	Logical	Equality	1+1==2
!=	Logical	Inequality	1+1!=3
>	Logical	Greater than	5>3
<	Logical	Less than	5<8
>=	Logical	Greater than or equal to	5>=5
<=	Logical	Less than or equal to	3<=3
&	Logical	And	
	Logical	Or	
!	Logical	Not	

Functions

- Functions:
 - $\circ~$ Involve most of the other things that are not operators as there are not enough symbols on the keyboard to perform everything one might need to do.
 - \circ $\,$ Set of statements organised together to perform a specific task.

Function	Description	Example
sqrt()	Square root	sqrt(4)
round()	Round to nearest whole number	round(5.8)
log()	Logarithm	log(4)
exp()	Exponentiation	exp(4)
abs()	Absolute value	abs(-4)

• Argument:

- Every function has this.
- *Functions* can be thought of as recipes and *arguments* like ingredients, such that the recipe combines the right ingredients in a specific way.
- *Arguments*: go within the brackets right after a function.

- *Default values*: many arguments have these, which are used when the user does not tell R what value to use (e.g., the default number of digits to round to is zero).
- Functions:
 - Many can take more than one argument, which are separated with commas.
 - *Arguments*: most also have names and can be used when typing commands in any order (e.g., round(3.1415, 2) is the same as round(digits=2, x=3.1415).
 - *Equal signs*: only one (=) is used inside functions, while two (==) is used to compare two things.
- **Silent fail**: occurs when the input does not make sense, leading to the default value being used without warning.
- Nesting functions:
 - \circ Just as a recipe can use the output of other recipes as ingredients, so too can functions use the output of other functions as arguments.
 - Hence, functions can take other functions as arguments (e.g., sqrt(round(4.45)).
 - Important to note that the parentheses are balanced.
- Navigation tips:
 - *Tab autocomplete*: for example, if the user types 'ro' and then hits tab, a window will be brought up showing possible commands the user might want to use (such as 'round').
 - *Help function*: if the user wants to know more about a function, they can use this function as help().

<u>Variables</u>

- Variables:
 - Likened to a box as it could store things.
 - Stores values (e.g., variable <- 'word').
 - Note that variable names are not in quotes.

Variable type	Stores	Example
Numeric	Numbers	NumericVar <- 4.78
Character	Text (via speech marks)	CharacterVar <- 'hi'
Logical	True/false values	LogicalVar <- TRUE

- Creating and using **variables**:
 - \circ $\;$ Used to store and label information.
 - Refer to the contents of a block of computer memory.
 - Use the 'assignment operator' (<-) to create one.
 - Variables in R behave the same way as their values do.
 - By assigning a new value, the old one will disappear since variables only contain one thing.