
Preliminaries 
Probability Concepts 

Expectation 

• i.e. weighted mean = average 

o The mostly likely outcome  

o Expectation measure the central location of the distribution 

• Probability distribution of a random variable X can be characterised by its 

o Probability mass function (PMF): pX(x) – if X is discrete  

▪ Discrete variable – number of dogs chosen 

▪ Assigns to each number of dogs the probability of it being chosen 

 
o Probability density function (PDF): fX(x) – if X is continuous  

▪ Continuous variable – person’s exact height 

▪ The probability of the height being between 65 and 70 inches is the 

integral of the PDF from 65 to 70 (i.e. the area under the curve) 

 
• For a random variable X with support S, the expectation E(X) is its mean µx 

o  
▪ Where the x before the px and fx is the realised value of X 

▪ i.e. the expectation is a weighted average where the PMF/PDF 

provides the weight attributed to the realised value 

o Note: the support S is the set of all possible values of X 

• Generalising – the expectation of g(X) is defined as 

o   
▪ g is some function of the random variable 



▪ Note: the g(X) before the pX(x) and fX(x) is the realization and the pX(x) 

and fX(x) are the weights 

 

Moments 

• First moment – equivalent to the mean 

o Discrete – 𝐸[𝑥] = ∑ 𝑝𝑥(𝑥) 𝑥 

o Continuous – 𝐸[𝑥] = ∫ 𝑝𝑥(𝑥) 𝑥 𝑑𝑥 

• Second moment 

o Discrete – 𝐸[𝑥2] = ∑ 𝑝𝑥(𝑥) 𝑥2 

▪ Variance = ∑ 𝑝𝑥(𝑥) (𝑥 − 𝐸[𝑥])2 = 𝐸[𝑥2] − 𝐸[𝑥]2 

o Continuous – 𝐸[𝑥2] = ∫ 𝑝𝑥(𝑥) 𝑥2 𝑑𝑥 

• nth moment 

o Discrete – 𝐸[𝑥𝑛] = ∑ 𝑝𝑥(𝑥) 𝑥𝑛 

o Continuous – 𝐸[𝑥𝑛] = ∫ 𝑝𝑥(𝑥) 𝑥𝑛 𝑑𝑥 

 

Variance, Skewness, Kurtosis and Covariance 

• Variance – second central moment of X 

o Measures how close the values tend to be to the mean  

▪ i.e. how spread out the distribution is around the mean 

o 𝜎𝑋
2  ≡ 𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝐸(𝑋))2] = 𝐸[𝑋2] − 𝐸[𝑋]2 

o Sample variance = �̂�𝑥
2 =  

∑ (𝑇
𝑡=1 𝑥𝑡−�̂�𝑥)2

𝑇−1
 

• Skewness – tells us how skewed (positively or negatively) the distribution of X is 

o 𝑆𝑘𝑒𝑤(𝑋) =  
𝐸[(𝑋− 𝜇𝑋)3]

𝜎𝑋
3  

▪ Sample skewness = 
∑ (𝑇

𝑡=1 𝑥𝑡−�̂�𝑥)3

𝑇−1(�̂�𝑥
3)

 

o It is a unit-free measure (it is normalized) which means it is comparable 

against different types of random variables taking on different units of 

measurement 

o 3rd central moment of X divided by the standard deviation3 

• Kurtosis – a measure of whether the data are heavy-tailed or light-tailed relative to a 

normal distribution 

o 𝐾𝑢𝑟(𝑋) =  
𝐸[(𝑋− 𝜇𝑋)4]

𝜎𝑋
4  

▪ Sample kurtosis = 
∑ (𝑇

𝑡=1 𝑥𝑡−�̂�𝑥)4

𝑇−1(�̂�𝑥
4)

 

o 𝐾𝑢𝑟(𝑋) = 3 for a normal distribution 

o High (excess) kurtosis means heavy-tailed which means many outliers 

o It is a unit-free measure 

o 4th central moment of X divided by the standard deviation4 

• Covariance – how closely related X and Y are in a linear fashion 

o 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))] 



 

Joint, Marginal and Conditional Distributions 

• Joint probability distribution of 2 random variables X and Y is characterised by 

o Joint pmf 𝑝𝑋,𝑌 (𝑥, 𝑦)  if discrete 

▪ i.e. P(𝑋 = 𝑥, 𝑌 = 𝑦) 

o Joint pdf 𝑓𝑋,𝑌 (𝑥, 𝑦) if continuous 

• The marginal distribution of X is characterised by 

o 𝑝𝑋(𝑥) =  ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)𝑦𝜖𝑆𝑌
 if discrete 

▪ i.e. obtain the PMF of 𝑋 and 𝑌 and sum over all possible values of 𝑦 

▪ i.e. obtain all the values of 𝑋 = 𝑥 for all values of 𝑦 and sum 

▪ SY is the support of Y 

 
o 𝑓𝑋(𝑥) =  ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦

 

𝑦𝜖𝑆𝑌
 if continuous 

▪ SY is the support of Y 

• Conditional distribution of Y given X is characterised by 

o i.e. the probability of 𝑦 occurring given 𝑥 has occurred 

o Conditional pmf 𝑝𝑌|𝑋(𝑦|𝑥) =
𝐽𝑜𝑖𝑛𝑡 𝑃𝑀𝐹(𝑥,𝑦)

𝑃𝑀𝐹(𝑥)
=

𝑝𝑋,𝑌(𝑥,𝑦)

𝑝𝑋(𝑥)
 if discrete 

o Conditional pdf 𝑓𝑌|𝑋(𝑦|𝑥) =
𝐽𝑜𝑖𝑛𝑡 𝑃𝐷𝐹(𝑥,𝑦)

𝑃𝐷𝐹(𝑥)
=  

𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)
 if continuous 

 

Conditional Expectation and Law of Iterated Expectations 

• Conditional expectation of Y given X is 

o  
▪ Weight the realised values of y by the conditional distribution 

function of y given x 

• Generalising – conditional expectation of h(Y) given X is 

o  
▪ h is some function 

• Law of iterated expectations – if the mean of Y is finite, 𝐸(𝑌)  =  𝐸[𝐸(𝑌|𝑋)] 

o i.e. the average of Y is equivalent to the average of the conditional 

expectation of Y|X 



o Holds if X and Y are random variables 

o Note: you can introduce any additional expectation within an existing 

conditional expectation provided that the conditioning set in the inner layer 

of expectation contains the outer layer of the conditioning set 

▪ i.e. the condition in the outside expectation is part of the condition in 

the insider set 

▪ i.e. inner conditioning set contains the outer conditioning set 

▪ E.g. in E[E(𝜀𝑡|ℱ𝑡−1)|ℱ𝑡−2],  ℱ𝑡−1 contains ℱ𝑡−2 

 

Independence 

• Independence – X and Y do not have a relationship with each other 

• X and Y are independent if the joint probability of X and Y is equal to the product of 

the marginal probabilities of X and Y 

o i.e. 𝑃(𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵) = 𝑃(𝑋 ∈ 𝐴) 𝑃(𝑌 ∈ 𝐵) for all subsets 𝐴, 𝐵 in ℝ 

• Using the joint, conditional and marginal PMF/PDF, for all 𝑥 ∈  𝑆𝑋 , 𝑦 ∈  𝑆𝑌, x and y 

are independent if the following holds 

o 𝑝𝑋,𝑌(𝑥, 𝑦) =  𝑝𝑋(𝑥)𝑝𝑌(𝑦)  𝑂𝑅  𝑝𝑌|𝑋(𝑦|𝑥) =  𝑝𝑌(𝑦) if discrete 

o 𝑓𝑋,𝑌(𝑥, 𝑦) =  𝑓𝑋(𝑥)𝑓𝑌(𝑦)  𝑂𝑅 𝑓𝑌|𝑋(𝑦|𝑥) =  𝑓𝑌(𝑦) if continuous 

• 𝑋1, 𝑋2, … , 𝑋𝑛 are jointly independent if 𝑃(𝑋1 ∈ 𝐴1, … , 𝑋𝑛 ∈ 𝐴𝑛) = 𝑃(𝑋1 ∈ 𝐴1)  ∙ … ∙

𝑃(𝑋𝑛 ∈ 𝐴𝑛) for all subsets 𝐴1, … , 𝐴𝑛 in ℝ 

o Note: it is much easier to disprove the joint independence of 2 variables 

 

Independence vs. Zero Correlation 

• Definition of uncorrelation – 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))] = 0 

o If X and Y are uncorrelated, then 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌) 

• Independence implies zero correlation, but not vice versa 

o i.e. zero correlation is a weaker assumption 

• To prove X and Y are independent requires that 𝐸(𝑔(𝑋)ℎ(𝑌)) = 𝐸(𝑔(𝑋))𝐸(ℎ(𝑌)) 

for all functions g(.) and h(.) 

o This is a stronger requirement than zero correlation 

o 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌) is a special version of the above as it 

sets g(.) and h(.) as identity functions (i.e. the function just 

equals a constant) 

• Special case in which independence implies zero correlation and 

vice versa 

o If (X, Y) follows a bivariate normal distribution with 

𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 0, then X and Y are independent 

 

Independence 

Zero Correlation 
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