Preliminaries

Probability Concepts

Expectation

- i.e. weighted mean = average
- The mostly likely outcome
- Expectation measure the central location of the distribution
- Probability distribution of a random variable X can be characterised by its
- Probability mass function (PMF): $p_{x}(x)$ - if X is discrete
- Discrete variable - number of dogs chosen
- Assigns to each number of dogs the probability of it being chosen

- Probability density function (PDF): $f_{x}(x)$ - if X is continuous
- Continuous variable - person's exact height
- The probability of the height being between 65 and 70 inches is the integral of the PDF from 65 to 70 (i.e. the area under the curve)

- For a random variable X with support S, the expectation $E(X)$ is its mean μ_{x}

$$
E(X)=\left\{\begin{array}{lc}
\sum_{x \in S} x p_{X}(x) & \text { if } X \text { is discrete with pmf } p_{X}(x) \\
\int_{x \in S} x f_{X}(x) d x & \text { if } X \text { is continuous with pdf } f_{X}(x)
\end{array}\right.
$$

- Where the x before the p_{x} and f_{x} is the realised value of X
- i.e. the expectation is a weighted average where the PMF/PDF provides the weight attributed to the realised value
- Note: the support S is the set of all possible values of X
- Generalising - the expectation of $g(X)$ is defined as

$$
E(g(X))=\left\{\begin{array}{lc}
\sum_{x \in S} g(x) p_{X}(x) & \text { if } X \text { is discrete; } \\
\int_{x \in S} g(x) f_{X}(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

- g is some function of the random variable
- Note: the $g(X)$ before the $p_{x}(x)$ and $f_{x}(x)$ is the realization and the $p_{X}(x)$ and $f_{x}(x)$ are the weights

Moments

- First moment - equivalent to the mean
- Discrete $-E[x]=\sum p_{x}(x) x$
- Continuous $-E[x]=\int p_{x}(x) x d x$
- Second moment
- Discrete $-E\left[x^{2}\right]=\sum p_{x}(x) x^{2}$
- Variance $=\sum p_{x}(x)(x-E[x])^{2}=E\left[x^{2}\right]-E[x]^{2}$
- Continuous $-E\left[x^{2}\right]=\int p_{x}(x) x^{2} d x$
- $\mathrm{n}^{\text {th }}$ moment
- Discrete $-E\left[x^{n}\right]=\sum p_{x}(x) x^{n}$
- Continuous $-E\left[x^{n}\right]=\int p_{x}(x) x^{n} d x$

Variance, Skewness, Kurtosis and Covariance

- Variance - second central moment of X
- Measures how close the values tend to be to the mean
- i.e. how spread out the distribution is around the mean
- $\sigma_{X}^{2} \equiv \operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$
- Sample variance $=\hat{\sigma}_{x}^{2}=\frac{\sum_{t=1}^{T}\left(x_{t}-\widehat{\mu}_{x}\right)^{2}}{T-1}$
- Skewness - tells us how skewed (positively or negatively) the distribution of X is
- $\operatorname{Skew}(X)=\frac{E\left[\left(X-\mu_{X}\right)^{3}\right]}{\sigma_{X}^{3}}$
- Sample skewness $=\frac{\sum_{t=1}^{T}\left(x_{t}-\widehat{\mu}_{x}\right)^{3}}{T-1\left(\widehat{\sigma}_{x}^{3}\right)}$
- It is a unit-free measure (it is normalized) which means it is comparable against different types of random variables taking on different units of measurement
- $3^{\text {rd }}$ central moment of X divided by the standard deviation ${ }^{3}$
- Kurtosis - a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution
- $\operatorname{Kur}(X)=\frac{E\left[\left(X-\mu_{X}\right)^{4}\right]}{\sigma_{X}^{4}}$
- Sample kurtosis $=\frac{\sum_{t=1}^{T}\left(x_{t}-\widehat{\mu}_{x}\right)^{4}}{T-1\left(\hat{\sigma}_{x}^{4}\right)}$
- $\operatorname{Kur}(X)=3$ for a normal distribution
- High (excess) kurtosis means heavy-tailed which means many outliers
- It is a unit-free measure
- $4^{\text {th }}$ central moment of X divided by the standard deviation ${ }^{4}$
- Covariance - how closely related X and Y are in a linear fashion
- $\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]$

Joint, Marginal and Conditional Distributions

- Joint probability distribution of 2 random variables X and Y is characterised by
- Joint pmf $p_{X, Y}(x, y)$ if discrete - i.e. $\mathrm{P}(X=x, Y=y)$
- Joint pdf $f_{X, Y}(x, y) \quad$ if continuous
- The marginal distribution of X is characterised by
- $p_{X}(x)=\sum_{y \in S_{Y}} p_{X, Y}(x, y) \quad$ if discrete
- i.e. obtain the PMF of X and Y and sum over all possible values of y
- i.e. obtain all the values of $X=x$ for all values of y and sum
- S_{Y} is the support of Y

X	${ }^{10}$	${ }^{012}$	${ }^{18}$
	Our	am	\%
	ame	am	${ }^{11}$
	ome	${ }^{001}$	-
	${ }_{010}$	${ }^{\text {ams }}$	\%
	"	r^{2}	3
		Y	

- $f_{X}(x)=\int_{y \in S_{Y}} f_{X, Y}(x, y) d y$ if continuous
- S_{Y} is the support of Y
- Conditional distribution of Y given X is characterised by
- i.e. the probability of y occurring given x has occurred
- Conditional pmf $p_{Y \mid X}(y \mid x)=\frac{\operatorname{Joint~PMF(x,y)}}{\operatorname{PMF}(x)}=\frac{p_{X, Y}(x, y)}{p_{X}(x)} \quad$ if discrete
- Conditional pdf $f_{Y \mid X}(y \mid x)=\frac{\operatorname{Joint} \operatorname{PDF}(x, y)}{\operatorname{PDF}(x)}=\frac{f_{X, Y}(x, y)}{f_{X}(x)} \quad$ if continuous

Conditional Expectation and Law of Iterated Expectations

- Conditional expectation of Y given X is
$E(Y \mid X=x)= \begin{cases}\sum_{y \in S_{Y}} y p_{Y \mid X}(y \mid x) & \text { if discrete; } \\ \int_{y \in S_{Y}} y f_{Y \mid X}(y \mid x) d y & \text { if continuous } .\end{cases}$
- Weight the realised values of y by the conditional distribution function of y given x
- Generalising - conditional expectation of $h(Y)$ given X is
$0 \quad E(h(Y) \mid X=x)= \begin{cases}\sum_{y \in S_{Y}} h(y) p_{Y \mid X}(y \mid x) & \text { if discrete; } \\ \int_{y \in S_{Y}} h(y) f_{Y \mid X}(y \mid x) d y & \text { if continuous. }\end{cases}$
- h is some function
- Law of iterated expectations - if the mean of Y is finite, $E(Y)=E[E(Y \mid X)]$
- i.e. the average of Y is equivalent to the average of the conditional expectation of $\mathrm{Y} \mid \mathrm{X}$
- Holds if X and Y are random variables
- Note: you can introduce any additional expectation within an existing conditional expectation provided that the conditioning set in the inner layer of expectation contains the outer layer of the conditioning set
- i.e. the condition in the outside expectation is part of the condition in the insider set
- i.e. inner conditioning set contains the outer conditioning set
- E.g. in $\mathrm{E}\left[\mathrm{E}\left(\varepsilon_{t} \mid \mathcal{F}_{t-1}\right) \mid \mathcal{F}_{t-2}\right], \mathcal{F}_{t-1}$ contains \mathcal{F}_{t-2}

Independence

- Independence $-X$ and Y do not have a relationship with each other
- X and Y are independent if the joint probability of X and Y is equal to the product of the marginal probabilities of X and Y
- i.e. $P(X \in A, Y \in B)=P(X \in A) P(Y \in B)$ for all subsets A, B in \mathbb{R}
- Using the joint, conditional and marginal PMF/PDF, for all $x \in S_{X}, y \in S_{Y}, \mathrm{x}$ and y are independent if the following holds
- $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ OR $p_{Y \mid X}(y \mid x)=p_{Y}(y)$ if discrete
- $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ OR $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ if continuous
- $X_{1}, X_{2}, \ldots, X_{n}$ are jointly independent if $P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=P\left(X_{1} \in A_{1}\right) \cdot \ldots \cdot$ $P\left(X_{n} \in A_{n}\right)$ for all subsets A_{1}, \ldots, A_{n} in \mathbb{R}
- Note: it is much easier to disprove the joint independence of 2 variables

Independence vs. Zero Correlation

- Definition of uncorrelation $-\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=0$
- If X and Y are uncorrelated, then $E(X Y)=E(X) E(Y)$
- Independence implies zero correlation, but not vice versa
- i.e. zero correlation is a weaker assumption
- To prove X and Y are independent requires that $E(g(X) h(Y))=E(g(X)) E(h(Y))$ for all functions $\mathrm{g}($.$) and \mathrm{h}($.
- This is a stronger requirement than zero correlation
- $E(X Y)=E(X) E(Y)$ is a special version of the above as it sets $\mathrm{g}($.$) and \mathrm{h}($.$) as identity functions (i.e. the function just$ equals a constant)
- Special case in which independence implies zero correlation and vice versa
- If (X, Y) follows a bivariate normal distribution with $\operatorname{Corr}(X, Y)=0$, then X and Y are independent

Independence

Zero Correlation

