
Forecasting Trends and Seasonality 
• General features of time series can be classified within three categories 

o Trends 

o Seasonality 

o Cycles 

• A time series usually exhibits two or more of these features 

o E.g. seasonal and cyclical 

 
o E.g. seasonal and trending 

 
Trends 

• Trend – a smooth, typically unidirectional pattern in the data that arises from the 

accumulation of information over time 

o i.e. a long-term increase or decrease in the data 

o Doesn’t have to be linear 

• ACF of trended series tend to have positive values that slowly decrease as the lags 

increase 

o i.e. When the data is trending ACF for small lags tend to be large and positive 

o This is because observations nearby are also nearby in size 

 

Trend Models 

• Trend models are (relatively) easy to fit and forecast 

• 4 types 

o Linear – 𝑦𝑡 = 𝛼 + 𝛽𝑡 

▪ Simplest model that can be used to account for a trending time series 



o Polynomial – 𝑦𝑡 = 𝛼 + 𝛽1𝑡 + 𝛽2𝑡
2 +⋯+ 𝛽𝑝𝑡

𝑝 

▪ E.g. quadratic, cubic, etc. 

▪ Caution is needed with (higher order) ones, as they may fit well in-

sample, but this does not translate to good performance for out-of-

sample 

▪ In fact, it is basically guaranteed that as you introduce more and more 

higher order polynomials, the out-of-sample forecast will deteriorate 

considerably 

o Exponential – 𝑦𝑡 = 𝑒𝛼+𝛽𝑡 OR ln(𝑦𝑡) = 𝛼 + 𝛽𝑡 

▪ Suitable when a time series is characterised with a stable 

relative/percentage change over time (e.g. GDP) 

o Shifting (or switching) – 𝑦𝑡 = 𝛼 + 𝛽1𝑡 + 𝛽2(𝑡 − 𝜏)𝐼(𝑡 > 𝜏), 𝜏 ∈ 𝑇 

▪ Within some range, there is a linear trend but then at some point 

there is a shift and we end up getting a different trend 

• Exponential trend is same as a linear tend fitted to natural logarithm of the series 

o For a time series {𝑦𝑡: 𝑡 = 1,… , 𝑇}, the natural log is 𝑧𝑡 = ln(𝑦𝑡) 

o Transforming the model is beneficial as the transformed model 

▪ Is easier to interpret (can identify relative/percentage change) 

▪ Homogenizes the variance of the time series 

▪ May result in improved forecasting accuracy 

o Fitted trend can be reverse-transformed to fit the original series – �̂�𝑡 = 𝑒 �̂�𝑡 

 

Fitting and Forecasting Trends 

• Generic representation of a trend model with an additive error term – 𝑦𝑡 =

𝑔(𝑡; 𝜃) +𝜀𝑡 

o Estimate 𝜃 by fitting the trend model to a time series using the least-squares 

regression – �̂� = 𝑎𝑟𝑔min
𝜃

∑ (𝑦𝑡 − 𝑔(𝑡; 𝜃))2𝑇
𝑡=1  

o Fitted values are given by – �̂�𝑡 = 𝑔(𝑡; �̂�) 

• Any future realization of a random variable assumed to follow a linear trend model is 

𝑦𝑡+ℎ = 𝛼 + 𝛽(𝑡 + ℎ) + 𝜀𝑡+ℎ 

o 𝑡 + ℎ is the trend variable 

• Optimal forecast – 𝑦𝑡+ℎ|𝑡 = 𝐸(𝑦𝑡+ℎ|Ω𝑡) = 𝐸[𝛼 + 𝛽(𝑡 + ℎ) + 𝜀𝑡+ℎ] = 𝛼 + 𝛽(𝑡 + ℎ) 

o i.e. 𝐸(𝑦𝑡) = 𝛼 + 𝛽𝑡 – doesn’t satisfy stationarity condition 

o Forecast error – 𝑒𝑡+ℎ|𝑡 = 𝑦𝑡+ℎ − 𝑦𝑡+ℎ|𝑡 = 𝜀𝑡+ℎ 

▪ This implies that the forecast error from this model will have exactly 

the same characteristics as what we assume about 𝜀 (white noise) 

o Forecast variance – 𝜎𝑡+ℎ|𝑡
2 = 𝐸(𝑒𝑡+ℎ|𝑡

2 ) = 𝐸(𝜀𝑡+ℎ
2 ) = 𝜎2,∀ℎ 

▪ i.e. 𝑉𝑎𝑟(𝑦𝑡) = 𝜎2 – variance is time-invariant 

▪ Assumes forecast variance doesn’t change with the horizon, which is 

perhaps an incorrect assumption 



o Density forecast – 𝑓(𝑌𝑡+ℎ|𝑡|Ω𝑡) → 𝑁(𝛼 + 𝛽(𝑡 + ℎ), 𝜎2) 

• Features of trend forecasts  

o Tend to understate uncertainty at long horizons 

o Short-term trend forecasts can perform poorly, while long-term trend 

forecasts typically perform poorly 

o Sometimes it may be beneficial to forecast growth rates and reconstruct level 

forecasts from growth  

 


