Forecasting Trends and Seasonality

e General features of time series can be classified within three categories
o Trends
o Seasonality
o Cycles
e Atime series usually exhibits two or more of these features
o E.g.seasonal and cyclical
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Trends
e Trend — a smooth, typically unidirectional pattern in the data that arises from the
accumulation of information over time
o i.e.along-term increase or decrease in the data
o Doesn’t have to be linear
e ACF of trended series tend to have positive values that slowly decrease as the lags
increase
o i.e. When the data is trending ACF for small lags tend to be large and positive
o This is because observations nearby are also nearby in size

Trend Models
e Trend models are (relatively) easy to fit and forecast
e Atypes
o Linear—-y,=a+ [t
= Simplest model that can be used to account for a trending time series



o Polynomial =y, = a + Byt + Byt + -+ + B,tP
= E.g. quadratic, cubic, etc.
= Caution is needed with (higher order) ones, as they may fit well in-
sample, but this does not translate to good performance for out-of-
sample
» |nfact, it is basically guaranteed that as you introduce more and more
higher order polynomials, the out-of-sample forecast will deteriorate
considerably
o Exponential -y, = e**At ORIn (y,) = a + St
= Suitable when a time series is characterised with a stable
relative/percentage change over time (e.g. GDP)
o Shifting (or switching) =y, = a + Bt + B,(t —D)I(t >1), TET
= Within some range, there is a linear trend but then at some point
there is a shift and we end up getting a different trend
e Exponential trend is same as a linear tend fitted to natural logarithm of the series
o Foratimeseries {y;:t = 1,...,T}, the natural log is z; = In (y;)
o Transforming the model is beneficial as the transformed model
= |s easier to interpret (can identify relative/percentage change)
= Homogenizes the variance of the time series
= May result in improved forecasting accuracy
o Fitted trend can be reverse-transformed to fit the original series -y, = e

Fitting and Forecasting Trends
e Generic representation of a trend model with an additive error term —y, =
g(t;0) + &
o Estimate 0 by fitting the trend model to a time series using the least-squares
regression — 0 = argmin S (v — g(t;0))?
o Fitted values are given by -y, = g(t; 9)
e Any future realization of a random variable assumed to follow a linear trend model is

Yesn = @+ B+ h) + &4p
o t+ histhe trend variable
o Optimal forecast = yeipe = EVesnlQe) = E[a + f(t + h) + &4p] = a + B(t + h)
o i.e.E(y;) = a+ ft—doesn’t satisfy stationarity condition
o Forecasterror —ecipt = Ye+n — Vet+ht = Et+n
= This implies that the forecast error from this model will have exactly
the same characteristics as what we assume about ¢ (white noise)
o Forecast variance — o/, = E(efipe) = E(eln) = 0%, Vh
= je.Var(y,) = ¢? —variance is time-invariant
= Assumes forecast variance doesn’t change with the horizon, which is
perhaps an incorrect assumption



o Density forecast — f (Yypnc| Q) = N(a + B(t + h),0?%)
Features of trend forecasts
o Tend to understate uncertainty at long horizons
o Short-term trend forecasts can perform poorly, while long-term trend
forecasts typically perform poorly

o Sometimes it may be beneficial to forecast growth rates and reconstruct level
forecasts from growth



