MAST10016

Chap 1: POPULATION GENETICS

1.1 Segregation Principle

- Gamete randomly receive one of adult's 2 alleles (Aa) for each autosomal gene with equal probability.
- Gamete randomly receive one of the adult's two sex chromosomes (XY) with equal probability.
- Occurs independently for genes on different chromosomes.
- Example:

- By segregation principle, E_1 =offspring get A from father, E_2 =offspring get A from mother -> $P(E_1) = P(E_2) = 0.5$
- Events are independent.
 - P(AA)-> 25%
 - $\circ \quad \mathsf{P}(\mathsf{AA})=P(E_1 \cap E_2)=P(E_1) \times P(E_2)$
 - multiplication law for independent events as E1 and E2 are independent
 - o 0.5*0.5=**0.25**
 - P(Aa)-> 50%
 - $\circ \quad P[(E_1 \cap E'_2) \cup (E'_1 \cap E_2)]$
 - $P(E_1 \cap E'_2) + P(E'_1 \cap E_2)$ as mutually exclusive
 - $[P(E_1) \times P(E'_2)] + [P(E'_1) \times P(E_2)]$ as E1 and E2 are independent
 - \circ (0.5 * 0.5) + (0.5 * 0.5)=0.5
 - P(aa) -> 25%

1.2 Law of probability

•

- Event -> something that may or may not occur.
 - Complement Law:
 - O P(E') = 1-P(E)
- Conditional probability:

$$P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)}$$

Independent events: (multiplication law)

 $\circ \quad P(E_1 \cap E_2) = P(E_1) \times P(E_2)$

Mutually exclusive: (addition law)

 $\circ \quad P(E_1 \cap E_2) = 0$

$\circ P(E_1 \cup E_2) = P(E_1) + P(E_2)$

1.3 Gene Disorders

- 4000 (rare) diseases, caused by single gene disorders/Mendelian disease
 - Depend on whether gene is:
 - Autosomal / sex-linked
 - Dominant / recessive
- Example:
 - Autosomal dominant
 - Huntington's disease (frequency 1 in 40,000)
 - Autosomal recessive
 - Sickle cell anemia (frequency 1 in 625)
 - X-linked recessive
 - Red-green color blindness (frequency 1 in 125)

Prevalence VS Incidence

- Prevalence (frequency) -> total number/proportion of population affected by disease at a given time.
- Incidence -> total number/proportion of new births that are affected by disease.
 - If incidence is constant, incidence = prevalence

1.4 Genotype Number and Frequency

- N total population size
- N^{AA} number of AA individuals in population
- f^{AA} frequency of AA in population $f^{AA} = \frac{N^{AA}}{N}$
- $N^{AA} + N^{Aa} + N^{aa} = N$ and $f^{AA} + f^{Aa} + f^{Aa} = 1$

1.5 Allele Numbers and Frequency

- N^A number of A alleles in population
- f^A frequency of A allele in **allele pool** (allele pool (single allele) from everyone in population)

1.6 Calculating allele frequencies from genotype frequencies

- $N^{A} = 2N^{AA} + N^{Aa}$ $f^{A} = \frac{N^{A}}{2N}$ $f^{A} = \frac{N^{A}}{2N} = \frac{2N^{AA} + N^{Aa}}{2N} = \frac{N^{AA}}{N} + \frac{1}{2}\frac{N^{Aa}}{N}$ $f^{A} = f^{AA} + \frac{1}{2}f^{Aa}$ $f^{A} = f^{AA} + \frac{1}{2}f^{Aa}$ (note: f^{A}+f^{a}=1)

1.7 Modelling assumptions (assumption to derive a math model) in population genetics

- 1.7.1. Random mating •
 - o Adults choose mating partner random (mate selection independent of genotypes)
 - Same as random sampling (with replacement) from the allele pool
 - o Thus:
 - Single random mating .

- P(offspring is AA) = $(f^A)^2$
- P(offspring is Aa) = $2f^A f^a = 2f^A (1 f^A)$
- P(offspring is aa) = $(f^a)^2 = (1 f^A)^2$
- N random mating
 - $N^{AA} \sim Bi(N, (f^A)^2)$
 - $N^{Aa} \sim Bi(N, 2f^A(1-f^A))$
 - $N^{aa} \sim Bi(N, (1-f^A)^2)$
 - $X \sim Bi(n, p)$ n=no. trials, p=probability of success

•
$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

•
$$E(X) = np$$

•
$$E(N^{AA}) = N(f^A)^2$$

•
$$E(f^{AA}) = \frac{1}{N} E(N^{AA}) = (f^{A})^2$$

- Var(X) = np(1-p)
 - $var(N^{AA}) = N(f^{A})^{2}(1 (f^{A})^{2})$

•
$$var(f^{AA}) = \frac{1}{N^2} var(N^{AA})$$

- Mean genotype frequencies are independent of N, but S.D. shrink as N increase.
- <u>1.7.2 Large population ($N \cong 10^4$) assumption</u>
 - As N increases, genotype frequency become concentrated on mean value, ignore variability in f^{AA}
 - $\circ \quad f^{AA} = E(f^{AA})$