Chap 1: POPULATION GENETICS

1.1 Segregation Principle

- Gamete randomly receive one of adult's 2 alleles (Aa) for each autosomal gene with equal probability.
- Gamete randomly receive one of the adult's two sex chromosomes (XY) with equal probability.
- Occurs independently for genes on different chromosomes.
- Example:

- By segregation principle, $E_{1}=$ offspring get A from father, $E_{2}=$ offspring get A from mother $->P\left(E_{1}\right)=P\left(E_{2}\right)=0.5$
- Events are independent.
- $P(A A)->25 \%$
- $\mathrm{P}(\mathrm{AA})=P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \times P\left(E_{2}\right)$
- multiplication law for independent events as E1 and E2 are independent
- $0.5 * 0.5=0.25$
- $P(A a)->50 \%$
- $P\left[\left(E_{1} \cap E^{\prime}{ }_{2}\right) \cup\left(E^{\prime}{ }_{1} \cap E_{2}\right)\right]$
- $P\left(E_{1} \cap E^{\prime}{ }_{2}\right)+P\left(E^{\prime}{ }_{1} \cap E_{2}\right)$ as mutually exclusive
- $\left[P\left(E_{1}\right) \times P\left(E^{\prime}{ }_{2}\right)\right]+\left[P\left(E_{1}^{\prime}\right) \times P\left(E_{2}\right)\right]$ as E1 and E2 are independent
- $(0.5 * 0.5)+(0.5 * 0.5)=\mathbf{0 . 5}$
- $\mathrm{P}(\mathrm{aa})->25 \%$

1.2 Law of probability

- Event -> something that may or may not occur.
- Complement Law:
- $P\left(E^{\prime}\right)=1-P(E)$
- Conditional probability:
- $P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}$
- Independent events: (multiplication law)
- $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \times P\left(E_{2}\right)$
- Mutually exclusive: (addition law)
- $P\left(E_{1} \cap E_{2}\right)=0$
- $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$

1.3 Gene Disorders

- 4000 (rare) diseases, caused by single gene disorders/Mendelian disease
- Depend on whether gene is:
- Autosomal / sex-linked
- Dominant / recessive
- Example:
- Autosomal dominant
- Huntington's disease (frequency 1 in 40,000)
- Autosomal recessive
- Sickle cell anemia (frequency 1 in 625)
- X-linked recessive
- Red-green color blindness (frequency 1 in 125)
- Prevalence VS Incidence
- Prevalence (frequency) -> total number/proportion of population affected by disease at a given time.
- Incidence -> total number/proportion of new births that are affected by disease.
- If incidence is constant, incidence = prevalence

1.4 Genotype Number and Frequency

- N - total population size
- N^{AA} - number of AA individuals in population
- $f^{A A}$ - frequency of AA in population $f^{A A}=\frac{N^{A A}}{N}$
- $N^{A A}+N^{A a}+N^{a a}=N$ and $f^{A A}+f^{A a}+f^{a a}=1$

1.5 Allele Numbers and Frequency

- $\quad N^{A}$ - number of A alleles in population
- f^{A} - frequency of A allele in allele pool (allele pool (single allele) from everyone in population)

1.6 Calculating allele frequencies from genotype frequencies

- $N^{A}=2 N^{A A}+N^{A a} \quad N^{a}=2 N^{a a}+N^{A a}$
- $f^{A}=\frac{N^{A}}{2 N} \quad f^{a}=\frac{N^{a}}{2 N}$
- $f^{A}=\frac{N^{A}}{2 N}=\frac{2 N^{A A}+N^{A a}}{2 N}=\frac{N^{A A}}{N}+\frac{1}{2} \frac{N^{A a}}{N}$
- $f^{A}=f^{A A}+\frac{1}{2} f^{A a} \quad f^{a}=f^{a a}+\frac{1}{2} f^{A a}$ (note: $f^{A}+f^{a}=1$)

1.7 Modelling assumptions (assumption to derive a math model) in population genetics

- 1.7.1. Random mating
- Adults choose mating partner random (mate selection independent of genotypes)
- Same as random sampling (with replacement) from the allele pool
- Thus:
- Single random mating
- P (offspring is AA$)=\left(f^{A}\right)^{2}$
- P (offspring is Aa$)=2 f^{A} f^{a}=2 f^{A}\left(1-f^{A}\right)$
- P (offspring is aa) $=\left(f^{a}\right)^{2}=\left(1-f^{A}\right)^{2}$
- \mathbf{N} random mating
- $N^{A A} \sim B i\left(N,\left(f^{A}\right)^{2}\right)$
- $N^{A a} \sim B i\left(N, 2 f^{A}\left(1-f^{A}\right)\right)$
- $N^{a a} \sim \operatorname{Bi}\left(N,\left(1-f^{A}\right)^{2}\right)$
- $\quad X \sim B i(n, p) \mathrm{n}=$ no. trials, $\mathrm{p}=$ probability of success
- $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- $E(X)=n p$
- $E\left(N^{A A}\right)=N\left(f^{A}\right)^{2}$
- $E\left(f^{A A}\right)=\frac{1}{N} E\left(N^{A A}\right)=\left(f^{A}\right)^{2}$
- $\operatorname{Var}(X)=n p(1-p)$
- $\operatorname{var}\left(N^{A A}\right)=N\left(f^{A}\right)^{2}\left(1-\left(f^{A}\right)^{2}\right)$
- $\operatorname{var}\left(f^{A A}\right)=\frac{1}{N^{2}} \operatorname{var}\left(N^{A A}\right)$
- Mean genotype frequencies are independent of N , but S.D. shrink as N increase.
- 1.7.2 Large population ($N \cong \mathbf{1 0}^{\mathbf{4}}$) assumption
- As N increases, genotype frequency become concentrated on mean value, ignore variability in $f^{A A}$
- $f^{A A}=E\left(f^{A A}\right)$

