Lecture 2- Normal physiology (extension)

- 1. Describe the compliance of lung, its determinants and effects on distribution of ventilation and ventilation/perfusion (V/Q).
 - Function residual capacity (FRC)
 - The volume we expire during tidal breathing
 - Determined inward recoil of lung = outward recoil of chest wall
 - Different disorders impact on these 2 parameters

Compliance of lung

• Determined by elastic tissue of lung

Effects of compliance of lung effects distribution of gas in normal FRC

- Breathe in, generate negative pressure
- Causes volume change as compliance curve
- Gas into alveolus, less gas in alveolus in top part of lung
- Compliance of lung and FRC determines where gas go to -> bottom of lung

Ventilation/perfusion matching (V/Q)

- Perfusion of lung is determined mainly by gravity
- Top of lung, slight V/Q mismatch; V/Q>1
- V/Q<1 at bottom of lung in older individuals
- Ideal V/Q during physical activity; V/Q=1

2. Explain the effects of size of tidal breath, FRC and the role of surfactant on compliance of the lung

Surfactant

- o Alters elastic recoil
- o Decreases surface tension in alveolus
- Increases compliance/stiffness
- Type 2 cells (line alveiol) stretch and surfactant is secreted onto alveolar surface (decreasing surface tension)

3. Describe the anatomy and physiology of normal defence mechanisms of the lung at the levels of the upper respiratory tract, lower respiratory tract and alveoli.

Issues covered include:

- Structure of sputum
- Influence of particle size on site of deposition
- Structure and function of gel and sol mucus
- Airway lining layers
- Ciliary function
- Action of alveolar macrophages
- Role of coughing in mucociliary clearance

Lung defences:

- Anatomical barriers
- Mucocillary defence mechanism
- Humeral response in the alveoli
- Cough

Defence mechanism

Defence mechanism					
Anatomical	Size	Defence			
feature		mechanism			
nose	>.10µm	Turbulence in sinus			
		Sneezing			
bronchi	10-3	MCC- mucociliary			
	μm	clearance			
		Cough			
Alveoli	2-3 μm	Macrophages			
		Lymphocytes			
	0.5 μm	Exhaled out			

- Size of bacteria determines where it will land and cause infection 1-35 μm
- Virus 0.5-1 μm
- Asbestos 2-3 μm

Mucociliary clearance (MCC)

- Mucus layer
 - o Sole layer= lubricating layer for cilia to move
 - o Gel layer= bug gets caught in this layer
- Cilia move gel layer up to oropharynx
 - o Effective stroke and recovery stroke
 - o 12 times per second
- MCC main defence mechanism of lungs
- Drugs, anaesthetics, infections can affect MCC and cause problems

Alveoli clearance

• Slow (24 hours – 3 days)