PHY3171 Lecture Notes

Revision

The Cardiovascular System:

- Blood flows in a continuous loop through the cardiovascular system via a pressure gradient
- Systemic and pulmonary circulations are in series
- Pulmonary circulation
 - o All blood goes to lungs
 - o Right heart pump
 - o Low pressure
- Systemic circulation
 - o Blood is shared between different organs and tissues
 - o Flow is parallel through all organs
 - o Left heart pump
 - o High pressure
- Total blood volume is approximately 7-8% of body weight
 - o ~5L in a 70kg man
 - o Approximately 80% of all blood is within the systemic circulation
 - o Veins, venules and venous sinuses are a variable volume reservoir of blood

Flow of Fluid:

- Blood flow is defined as the volume of blood flowing through a vessel, organ or the circulation, per unit of time (mL/min)
 - o Flows from high to low pressure
- Blood pressure is defined as the force per unit area exerted on the wall of a vessel by the blood (mmHg)
 - Contraction of the heart generates the pressure that drives the flow of blood through the blood vessels
- Resistance to flow (R) is the amount of friction blood encounters as it passes through the vessels

Flow = mean pressure / resistance

Cardiac output = heart rate x stroke volume

Mean arterial pressure = cardiac output x total peripheral resistance

Resistance to Flow:

- There are 3 factors determining the resistance to blood flow
 - Length of the tube constant within the body
 - o Radius of the tube can and does change (vasodilation, vasoconstriction)
 - Viscosity of the fluid relatively constant
- Resistance is directly proportional to the length of the tube the longer the tube, the greater the resistance
- Resistance is inversely proportional to the radius of the tube greater diameters equal less resistance
 - \circ Small changes in diameter cause big changes to resistance due to the equation R = $1/r^4$
 - Can be influenced by pathology (e.g. atherosclerosis, structural abnormalities) or factors affecting vasoconstriction/dilation (e.g. local chemical and physical factors, sympathetic nervous system, vasoactive hormones, endothelium-derived factors)
- Resistance is directly proportional to viscosity of the fluid the greater the viscosity, the greater the resistance
 - Increased haematocrit = increased viscosity = increased resistance

The Heart:

- The heart contracts and relaxes in a rhythmic and coordinated fashion to achieve effective pumping of blood
- It is a closely integrated sequence of events termed the cardiac cycle
 - o Systole period of contraction
 - o Diastole period between contractions (relaxation)

- The heart's valves open passively and prevent backflow
 - o Are always either open or shut depending on the pressure gradient across the valve
- Atrioventricular (AV) valves
 - o Tricuspid right atrium
 - o Mitral left atrium
- Semilunar valves
 - o Pulmonary right ventricle
 - o Aortic left ventricle

The Cardiac Cycle:

- Systole
 - o Isovolumetric ventricular contraction
 - Ventricular ejection
- Diastole
 - o Isovolumetric ventricular relaxation
 - o Passive ventricular filling atrial contraction
- Cardiac output is the volume of blood pumped by each ventricle per minute
 - Approximately 4.9L/min at rest (~70 bpm x ~70 mL/min)
 - o Can increase 5-6-fold during strenuous exercise up to 25-30 L/min
 - o Can be up to 35-45 L/min in highly trained athletes
 - o Increases by ~50% during pregnancy
 - o Any less than 3 L/min becomes life threatening

Stroke Volume:

- Stroke volume is the volume of blood pumped with each contraction (heartbeat)
- There are 3 major determinants
 - o Preload end-diastolic volume (degree of filling)
 - o Contractility force of contraction of individual ventricular muscle fibres
 - o Afterload pressure that must be exceeded before ejection of blood from ventricles can begin
- Preload is influenced by the duration of ventricular diastole (filling time) and venous pressure (passive filling)
 - o Increased venous return automatically increases stroke volume
 - o Increased filling of ventricles stretches cardiac muscle cells and therefore ventricles contract with greater force
 - o Underlying basis is the length-tension relationship of cardiac muscle Frank Starling Law of the heart
- Changes in contractility (and therefore contraction strength) are generally due to
 - o Change in amount of calcium ions entering and being released in cardiac muscle cells
 - o Change in affinity of the myofilaments for calcium ions
 - o Change in the number of myofilaments available to participate in contraction
- Contractility can be influenced by
 - o Certain drugs and hormones
 - o Ionic changes in extracellular fluid
 - o Increased sympathetic stimulation NA and Adrenaline act on β-adrenoceptors on cardiac muscle cells to increase calcium ion entry into cell and evoke greater calcium ion release from sarcoplasmic reticulum
- Afterload is the pressure in the arterial system (aorta or pulmonary artery) that resists ventricular ejection
 - o For ventricles to be able to eject blood, ventricular pressure must rise higher than the pressure in the respective arterial system
 - o High arterial pressure (high afterload) can therefore reduce stroke volume

Ejection Fraction:

- The ejection fraction is an important indicator of cardiac health

- o Should be at least 55% in a healthy heart
- It is the stroke volume expressed as a fraction or percentage of the end-diastolic volume

Ejection fraction = stroke volume / end-diastolic volume

- Typical values at rest
 - o EDV = 120 mL, ESV = 50 mL
 - \circ SV = 120 50 = 70 mL
 - o EF = 70 / 120 = 0.6 = 60%
- The ejection fraction increases when cardiac contractility increased
 - o Can be as high as 90% in vigorous exercise

Heart Rate:

- Controlled by autonomic nervous system acting on pacemaker cells of the sinoatrial (SA) node
 - o Decreased by parasympathetic stimulation ("rest and digest") bradycardia
 - o Increased by sympathetic stimulation ("fight or flight") and circulating adrenaline tachycardia
- Other factors include potassium ion imbalance in extracellular fluid or high body temperature
 - o These do not play a role in the normal control of heart rate
- Average values
 - o ~70 bpm for normal resting heart rate
 - o ~40 bpm in athletes
 - o ~200 bpm upper limit
 - o Lower limit = 220 age

Arterial Blood Pressure:

- Rises and falls with cardiac cycle
- Pressure in large arteries essentially the same because of low resistance to flow
- Key definitions
 - o Systolic pressure highest pressure during one cycle
 - o Diastolic pressure lowest pressure during one cycle
 - o Pulse pressure systolic minus diastolic pressure
 - o Mean arterial pressure average pressure over one cycle (diastolic + 1/3 pulse pressure)
- Normal values
 - Systolic over diastolic pressure = 120 / 80 mmHg
 - \circ MAP = \sim 93 mmHg

Week 1

Challenges to Cardiovascular Homeostasis

Changes in Total/Central Blood Volume:

- Reduced
 - o Haemorrhage
 - o Head-up tilt
 - o Standing
 - o Lower body negative pressure
- Increased
 - o Blood or plasma transfusion
 - o Head-out water immersion
 - Lower body positive pressure
- Changes in energy/organ flow requirements
 - o Exercise
 - Diving
 - o Alerting responses

Challenges to Cardiovascular Homeostasis: