
Regular languages and Finite Automata

Formal definition of Finite Automaton(5 tuples)
1. Q, a set of states,
2. Σ, the alphabet,
3. δ : Q × Σ → Q, the transition function,
4. q0 ∊ Q, the start state, and
5. F ⊆ Q, the set of accepting states.

Eg.

Q = {A,B,C,D}
Σ = {0,1}
q0 = A
F = {B,C}

δ 0 1

A B C

B D D

C D D

D D D

Construct transition table:

 a b c

X X, Y, Z X Z

Y Ø Ø Ø

Z Ø Ø Y, Z

New transition table for DFA:

Procedure:
Start with q0 of NFA(X in this case), note down the states reachable from
X(XYZ, X and Z)

Since DFA can only have a single transition between a pair of
states, new states have to be created. (eg for NFA, X on input a
can go to either X, Y or Z, with equivalent DFA, this have to be
represented by a new state XYZ.)

From the reachable states, note down their reachable states on all inputs.

Repeat the process until no more reachable states can be noted.

q0 for DFA is the same as q0 for NFA, F for DFA state that contains F for
NFA. There might be needs to add a sink state(recall for each state in
DFA there will be transitions representing all possible inputs.)

 a b c

X XYZ X Z

Z Ø Ø YZ

YZ Ø Z YZ

XYZ XYZ XZ YZ

XZ XYZ X YZ

Product Construction
Each state is a pair of states
Transition is the product of transitions
q0 is the product of q0s
F -union: includes one of F
 -intersection: include both Fs

Eg:

✕

States: AX, AY, AZ, BX, BY, BZ, CX, CY, CZ

Transitions: A on 0 goes to B, X on 0 goes to Y, so AX on 0 goes to BY, etc

 0 1

AX BY CX

AY BZ CY

AZ BZ CZ

BX BY BX

BY BZ BY

BZ BZ BZ

CX CY CX

CY CZ CY

CZ CZ CZ

Chomsky Normal Form

CFG is in Chomsky Normal Form(CNF) is all its R is in the form

- A → BC
- A → a
- S → ε

A, B, C ∊ V, a ∊ Σ(a ≠ ε), S(start variable) ∊ V

CNF Conversion:

1. Add new S0 and production S0 → S
2. If any A → aB appears, do A → XB, X → a.
3. Convert A → B1, B2, B3, ...Bn to A → B1A1, A1 → B2A2, A2 → B3A3, …, An-2 →

Bn-1Bn.
4. If A → ε, substitute A where A appears in any RHS with ε, remove ε production

unless A = S
5. If A → B and B → XYZ, replace with A → XYZ

Pumping Lemma for context free grammar

If L is a CFL, there is a number p > 0 such that for every s ∊ L where |s| ≥ p, s can be
divided into five parts s = uvwxy such that:

- |vx| ≥ 1
- |vwx| ≤ p
- uvnwxny ∊ L for all n ∊ ℕ

Procedure: Given L → assume L is a CFL → L has a pumping length p → find s where
|s| ≥ p → show uvnwxny ∉ L for some n → show there’s no way to divide s into nvwxy
that satisfies the 3 conditions → s cannot be pumped.

Eg. Given L = {anbncn}, assume exist p > 0, let s = apbpcp ∊ L, then either:

- vwx = ai for some 1 ≤ i ≤ p
- vwx = aibj for some 1 ≤ i + j ≤ p
- vwx = bi for some 1 ≤ i ≤ p
- vwx = bicj for some 1 ≤ i + j ≤ p
- vwx = ci for some 1 ≤ i ≤ p

In all cases, uvvwxxy has too many of one or two characters. Third character is
not repeated enough.

Turing recognisable
A language is decidable if and only if it’s Turing recognisable and co-Turing
recognisable(it’s complement is recognisable)

A and Ā are T-recognisable, let M1 and M2 be their recogniser respectively

M = On input w
1. Run M1 and M2 on w
2. If M1 accept, accept. If M2 accept, reject

A is decidable

ETM is undecidable

ETM = {<M> | M is a TM, L(M) = ø}
Show if some TM R decides ETM, then TM S decides ATM

 Bulid M1:

M1 = “On input x:
1. If x ≠ ω, reject
2. If x = ω, run M on w and accept if M does”

S = On input (M, v)

1. Use the description of M to build M1 as noted above
2. Run R on input <M1>
3. If R accepts, reject, if R rejects, accept.

EQTM is undecidable
 EQTM = {<M, N> | M and N are TMs with L(M) = L(N)}

Exist TM V decides EQTM, and TM X decides ETM

X = On input <M> where M is a TM
1. Run V on <M, N> where N is a TM that reject all inputs
2. If V accepts, accept, if V rejects, reject

Thus if V decides EQTM, there exists X that decides ETM.

