Financial Math

Sequences and Series

A sequence is a list of numbers that follow a definite pattern.

Arithmetic sequence: Each term is obtained by adding a constant to the previous term. These sequences are in the form: a, a + d, a + 2d, a + 3d, ...

Geometric sequence: Each term is obtained by multiplying the previous term by a constant. These sequences are in the form: a, ar, ar^2, ar^3, \dots

A series is the sum of the terms of a sequence. It might be finite (adding finitely many terms of a sequence) or infinite (adding infinitely many terms of a sequence).

Arithmetic series: Sum of the terms of an arithmetic sequence Geometric series: Sum of the terms of a geometric sequence

Arithmetic Series

The specific term is given by:

$$T_n = a + (n-1)d$$

Sum of the first n terms of the arithmetic sequence:

$$S_n = \frac{n}{2}(2a + (n-1)d)$$
$$= \frac{n}{2}(a+l)$$

Geometric Series

The specific term is given by:

$$T_n = ar^{n-1}$$

Sum of the first n terms of the geometric sequence:

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}$$

Infinite Geometric Series

If |r| < 1, then the sum of the infinite sequence exists. The sum of the terms of the geometric sequence is given by (assuming |r| < 1:

$$S_n = \frac{a}{1-r}$$

Simple and Compound Interest

Simple Interest

Simple interest is a fixed percentage of the principal P_0 that is paid to an investor each year. If the investor invests P_0 at an annual rate of i% then after t years she will receive:

$$I = P_0 \times i \times t$$

Conversely, give the value of the investment after t years (P_t) , after t years will be:

$$P_0 = \frac{P_t}{1+it}$$

Compound Interest

Compound interest pays interest on the principal plus interest on any interest accumulated in previous years.

The value after year t is given by:

$$P_t = P_0(1+i)^t$$

Given the value after t years (P_t) and the interest i, one can find the principal (P_0) :

$$P_0 = \frac{P_t}{(1+i)^t}$$

Interest Compounded Several Times per Year

Interest may be compounded multiple times a year. Each time period is known as a conversion period. If the number of conversion periods per year is denoted by m and the interest is i% per year then $\frac{i}{m}$ is applied each conversion period. That is, in t years, the value of an initial investment of P_0 will be:

$$P_t = P_0 \left(1 + \frac{i}{m}\right)^{mt}$$

Continuous Compounding

Continuous compounds is when the number of conversion periods approach infinity. This means that after 1 year, the value of the investment will be:

$$\lim_{m \to \infty} P_0 \left(1 + \frac{i}{m} \right)^m = P_0 e^i$$

This is because as n get larger, $\left(1 + \frac{i}{n}\right)^n$ approached e^i . So, the value of an investment P_0 after t years, when compounded continuously at interest rate i is:

$$P_t = P_0 e^{it}$$

Integration

Integration is the reverse of differentiation. The integral of a function f(x) would be the function g(x) whose derivative is f(x). That is, the integral of f(x) is g(x) that satisfies g'(x) = f(x).

Integration is expressed with the symbol \int . In particular, $\int f(x) dx = g(x)$ means that the integral of f(x) is g(x).

The Power Rule of Integration

The power rule of integration is directly derived from the power rule of differentiation. The power rule simply states the following:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

For any value of n, that is not equal to -1, we can find the integral of x^n with the power rule. If, n = -1, it results in $\ln(x) + C$.

Further Rules for Integration

Integral of a Constant: For any constant K, $\int K dx = Kx + C$.

Sum and Difference: Integral of the sum (or difference) of several functions is the sum (or difference) of the integrals of each function. That is, $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$

Multiplication by a Constant: The integral of a function multiplied by a constant is the integral of the function multiplied by the constant. That is, $\int Kf(x) dx = K \int f(x) dx$.

Integral of the Natural Exponential: The integral of the exponential function e^x is itself (plus a constant). That is, $\int e^x dx = e^x + C$.

Integration by Substitution

Integration by substitution is derived from the chain rule of differentiation.

Example: Evaluate $\int (x^3 + 10)^3 2x \, dx$. We can set $u = x^2 + 10$, which would imply that $\frac{du}{dx} = 2x$, and hence $du = 2x \, dx$. Substituting u and du into the initial equation, we have:

$$\int (x^2 + 10)^3 2x \, dx = \int u^3 \, du$$
$$= \frac{u^4}{4} + C$$
$$= \frac{(x^2 + 10)^4}{4} + C$$

Integration by Parts

Integration by parts is derived from the product rule of differentiation. Integration by parts is given by the following equation:

$$\int f(x)g(x)dx = f(x)\int g(x) \, dx - \int f'(x)(\int g(x) \, dx) \, dx$$

Hint: Let g(x) be the function that can be integrated.

Example:

Evaluate:
$$\int \frac{\ln(x)}{x^2} dx$$

Let $f(x) = \ln(x)$ and $g(x) = x^{-2}$
$$\therefore \int \frac{\ln(x)}{x^2} dx = \ln(x) \left(-\frac{1}{x}\right) - \int \frac{1}{x} \left(-\frac{1}{x}\right) dx$$
$$= -\frac{\ln(x)}{x} + \int x^{-2} dx$$
$$= -\frac{\ln(x)}{x} + \frac{x^{-1}}{-1} + C$$
$$= -\frac{\ln(x)}{x} - \frac{1}{x} + C$$