Financial Math

Sequences and Series

A sequence is a list of numbers that follow a definite pattern.
Arithmetic sequence: Each term is obtained by adding a constant to the previous term. These sequences are in the form: $a, a+d, a+2 d, a+3 d, \ldots$

Geometric sequence: Each term is obtained by multiplying the previous term by a constant. These sequences are in the form: $a, a r, a r^{2}, a r^{3}, \ldots$

A series is the sum of the terms of a sequence. It might be finite (adding finitely many terms of a sequence) or infinite (adding infinitely many terms of a sequence).

Arithmetic series: Sum of the terms of an arithmetic sequence
Geometric series: Sum of the terms of a geometric sequence

Arithmetic Series

The specific term is given by:

$$
T_{n}=a+(n-1) d
$$

Sum of the first n terms of the arithmetic sequence:

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
& =\frac{n}{2}(a+l)
\end{aligned}
$$

Geometric Series

The specific term is given by:

$$
T_{n}=a r^{n-1}
$$

Sum of the first n terms of the geometric sequence:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

Infinite Geometric Series

If $|r|<1$, then the sum of the infinite sequence exists. The sum of the terms of the geometric sequence is given by (assuming $|r|<1$:

$$
S_{n}=\frac{a}{1-r}
$$

Simple and Compound Interest

Simple Interest

Simple interest is a fixed percentage of the principal P_{0} that is paid to an investor each year. If the investor invests P_{0} at an annual rate of $i \%$ then after t years she will receive:

$$
I=P_{0} \times i \times t
$$

Conversely, give the value of the investment after t years $\left(P_{t}\right)$, after t years will be:

$$
P_{0}=\frac{P_{t}}{1+i t}
$$

Compound Interest

Compound interest pays interest on the principal plus interest on any interest accumulated in previous years.
The value after year t is given by:

$$
P_{t}=P_{0}(1+i)^{t}
$$

Given the value after t years $\left(P_{t}\right)$ and the interest i, one can find the principal $\left(P_{0}\right)$:

$$
P_{0}=\frac{P_{t}}{(1+i)^{t}}
$$

Interest Compounded Several Times per Year

Interest may be compounded multiple times a year. Each time period is known as a conversion period. If the number of conversion periods per year is denoted by m and the interest is $i \%$ per year then $\frac{i}{m}$ is applied each conversion period. That is, in t years, the value of an initial investment of P_{0} will be:

$$
P_{t}=P_{0}\left(1+\frac{i}{m}\right)^{m t}
$$

Continuous Compounding

Continuous compounds is when the number of conversion periods approach infinity.
This means that after 1 year, the value of the investment will be:

$$
\lim _{m \rightarrow \infty} P_{0}\left(1+\frac{i}{m}\right)^{m}=P_{0} e^{i}
$$

This is because as n get larger, $\left(1+\frac{i}{n}\right)^{n}$ approached e^{i}.
So, the value of an investment P_{0} after t years, when compounded continuously at interest rate i is:

$$
P_{t}=P_{0} e^{i t}
$$

Integration

Integration is the reverse of differentiation. The integral of a function $f(x)$ would be the function $g(x)$ whose derivative is $f(x)$. That is, the integral of $f(x)$ is $g(x)$ that satisfies $g^{\prime}(x)=f(x)$.

Integration is expressed with the symbol \int. In particular, $\int f(x) d x=g(x)$ means that the integral of $f(x)$ is $g(x)$.

The Power Rule of Integration

The power rule of integration is directly derived from the power rule of differentiation. The power rule simply states the following:

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

For any value of n, that is not equal to -1 , we can find the integral of x^{n} with the power rule. If, $n=-1$, it results in $\ln (x)+C$.

Further Rules for Integration

Integral of a Constant: For any constant $K, \int K d x=K x+C$.
Sum and Difference: Integral of the sum (or difference) of several functions is the sum (or difference) of the integrals of each function. That is, $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$

Multiplication by a Constant: The integral of a function multiplied by a constant is the integral of the function multiplied by the constant. That is, $\int K f(x) d x=K \int f(x) d x$.

Integral of the Natural Exponential: The integral of the exponential function e^{x} is itself (plus a constant). That is, $\int e^{x} d x=e^{x}+C$.

Integration by Substitution

Integration by substitution is derived from the chain rule of differentiation.
Example: Evaluate $\int\left(x^{3}+10\right)^{3} 2 x d x$. We can set $u=x^{2}+10$, which would imply that $\frac{d u}{d x}=2 x$, and hence $d u=2 x d x$. Substituting u and $d u$ into the intial equation, we have:

$$
\begin{aligned}
\int\left(x^{2}+10\right)^{3} 2 x d x & =\int u^{3} d u \\
& =\frac{u^{4}}{4}+C \\
& =\frac{\left(x^{2}+10\right)^{4}}{4}+C
\end{aligned}
$$

Integration by Parts

Integration by parts is derived from the product rule of differentiation. Integration by parts is given by the following equation:

$$
\int f(x) g(x) d x=f(x) \int g(x) d x-\int f^{\prime}(x)\left(\int g(x) d x\right) d x
$$

Hint: Let $g(x)$ be the function that can be integrated.
Example:

$$
\begin{aligned}
& \text { Evaluate: } \int \begin{aligned}
\int \frac{\ln (x)}{x^{2}} d x & \\
\text { Let } f(x)=\ln (x) \text { and } g(x) & =x^{-2} \\
\therefore \int \frac{\ln (x)}{x^{2}} d x & =\ln (x)\left(-\frac{1}{x}\right)-\int \frac{1}{x}\left(-\frac{1}{x}\right) d x \\
& =-\frac{\ln (x)}{x}+\int x^{-2} d x \\
& =-\frac{\ln (x)}{x}+\frac{x^{-1}}{-1}+C \\
& =-\frac{\ln (x)}{x}-\frac{1}{x}+C
\end{aligned}
\end{aligned}
$$

