NURS3101 Final exam Revision Notes

Contents

Tutorial 1 – Shock and blood transfusion	2
Kahoot questions	11
Tutorial 2 – Sepsis	12
Kahoot questions	24
Tutorial 3 – Burns	25
Kahoot questions	33
Tutorial 4 – Traumatic brain injury	33
Kahoot questions	44
Tutorial 5a – Drowning	45
Tutorial 5b – Spinal cord injury	51
Tutorial 6a – Fracture 5	53
Kahoot guestions	58
Tutoral 6b – Mass casual incident	58

Tutorial 1 – Shock and blood transfusion Learning objectives:

- Explain shock, stages and types of shock
- Recognise the most common type of shock
- Understand primary and secondary survey in emergency care
- Identify the different mechanisms of injury and potential patient injuries
- Outline and prioritise the management of a patient in hypovolaemic shock
- Understand permissive hypotension, triad of death, and acute traumatic coagulopathy
- Explain best practice for blood transfusion and massive transfusion
- Revise the pathophysiology of shock, including classification and stages of shock
- Understand trauma call and the role of the trauma team
- Practice how to conduct patient history
- Practice how to conduct Primary (A-E assessment) & Secondary assessment
- Prioritise the care and interventions for a patient experiencing and
- Discuss the rationale and outcome of the interventions
- Use the massive transfusion protocol

Reading – 'Nursing care of people experiencing trauma or shock

- Trauma → Injury to human tissues and organs resulting from the transfer of phergy from the environment
- Traumatic injury is the leading cause of death in seople under 45y/o, a leading cause of morbidity, mortality and permanent disability
- Components of trauma
 - Mechanism \rightarrow The environmental factor that caused the trauma
 - Intention → whether intentional or unintentional injury
 - Environment → things in the environment that may have contributed to the injury, risk of injury, etc
- Types of trauma
 - Minor trauma → Injunctoral single part or system e.g. fracture, small second-degree bur, laceration requiring sutures
 - Major or Multiple trauma serious single system injury e.g. traumatic leg amputation.
 Multiple trauma is usually a result of MVA
 - Blunt trauma > trauma in which the inside and the outside of the body make no communication (internal)
 - Benetrating teama → foreign object enters the body to cause injury to internal structures e.g. gunshot or stab wounds
 - Other types of the ma include → inhalation (from gas, smoke or steam), burn or freezing injuries, blast injuries
- Airway obstruction
 - Airway must be assessed for patency stat
 - All interventions performed must be reassessed for effectiveness
 - All trauma victims should receive high flow oxygen until stabilised
 - Breathing assessment is paramount and should include:
 - Whether the person has spontaneous breathing
 - Good rise and fall of the chest
 - o Determination of skin colour
 - General rate and depth
 - Use of abdominal or accessory muscles
 - Position of trachea
 - Observation of chest wall integrity and jugular vein distention
 - Bilat breath sounds
 - Any surface trauma

- Integumentary effects
 - Not as serious as other injuries with exception to burns
 - May be caused by blunt or penetrative sources
 - 5 specific injuries of the integumentary system
 - 1. Contusion → superficial tissue injury result from blunt trauma and cause breakage of small blood vessels and bleeding into surrounding tissue
 - 2. Abrasion → partial thickness denudations of an area of integument generally resulting from falls or scrapes
 - 3. Puncture wound \rightarrow occurs when a sharp or blunt object penetrates the integument
 - 4. Laceration \rightarrow open wounds that result from sharp cutting or tearing
 - 5. Full thickness avulsion injury → injuries that result in loss of all the layers of the skin causing fat and muscle to be exposed
- Abdominal effects
 - Direct trauma can lacerate or compress the solid organs and cause burst injuries to the hollow organs
 - Blood vessels may be torn, and organs displaced from their blood supply causing lifethreatening haemorrhage
- Musculoskeletal effects
 - Are not considered high priority in a person with multiple injuries except in cases where it is life or limb threatening
- Neurological effects
 - Head injuries are a common type of injury
 - Most result from blunt trauma
- Multiple organ dysfunction syndrome
 - Common complication of severe miur
 - Progressive impairment of 2 or more organ systems
 - Results from an uncontrolled inflammatory response to severe injury or illness
 - Primary organs systems involved include: resp, renal, hepatic, haematological, cardio, gastro and neurological
- Primary trauma assessment
 - A → Airway
 - B → Breathing; rib fractures and collapsed lung
 - C → Circulation assessment: identifying any sources of external bleeding
 - D → Disability; peurological status
 - Exposure Environment
- Secondary trauma assessment
 - E Full set of '
 - G Give comfort measures; physical and emotional
 - H → Head to toe assessment and medical hx
 - I Inspection of posterior surfaces for injuries

Video - 'what is shock'

- O2 delivery < O2 required → inadequate delivery of oxygen to the tissues (tissue perfusion)
- Tissue perfusions → volume of blood that can be distributed over a certain amount of time over/to a certain amount of tissue (e.g. 20mL/min/100g tissue) → perfusion = how much blood can reach a certain amount of tissue in a given time period
- Certain things can increase the amount of oxygen required but shock focuses on the oxygen that is actually delivered or the 'oxygen delivery'

Types of shock

- 1. <u>Hypovolaemic shock</u> → Vomiting, diarrhoea, bleeding = volume loss
- 2. <u>Cardiogenic shock</u> → Decrease flow through the entire cardiovascular system (hypocontractile)
- 3. <u>Obstructive shock</u> → Obstruction preventing blood flow
- e.g. pulmonary embolism
- 4. <u>Distributive shock</u> → Collection of fluid between the cells of organs that require oxygen and the blood vessels that are delivering the oxygen. This makes it a lot harder for blood to get to the tissues because it has to get through all the fluid first
- E.g. septic, anaphylactic, neurogenic shock

Review questions

- 1. How is BP calculated, what factors determine BP and which body system are involved in BP homeostasis?
 - BP is calculated using a sphygmomanometer
 - Factors that determine BP include: Cardiac output, stroke volume, peripheral vascular resistance, volume of circulating blood
 - The body systems involved include the cardiovascular system, renal and respiratory systems.
- 2. What receptors detect a change in BP? Where are they located?
 - Baroreceptors located in the aortic archand the carotid sinus are responsible for detecting changes in BP
- 3. What is mean arterial pressure (MAP)? In practice, how could you calculate MAP?
 - MAP is the average arterial blood pressure in an individual during a single cardiac cycle.
 - MAP = CO (cardiac output) x SVR (systemic vascular resistance)
- 4. Define shock and explain the stages of shock, especially how you would recognise the early stage of shock?
 - Shock is when the oxygen supply to the tissues does not meet the demand required.
 - Shock has 3 different stage.
 - \rightarrow 1. Early, reversible and compensatory shock: begins when there is a MAP drop of less than 10mmHg from normal. The circulating blood volume may drop less than 500mL but is not enough to cause serious effects
 - \rightarrow 2. Intermediate of progressive shock: occurs after a sustained MAP drop of 20mmHg or more and a fluid loss of 35-50% (1800-2500mL)
 - ⇒ 3. Refractory or irreversible shock: tissue anoxia is generalised, and cell death is so widespread that a temporary return in MAP will have no effect as too much cell death has occurred to estain life. Cell death \rightarrow tissue death \rightarrow organ death \rightarrow body death
- 5. How may shock be classified?
 - Shock can be classified in 4 ways:
 - 1 Hyperolaemic → decrease in IV volume by 15% or more
 - 2. Cardiogenic → the heart's pumping ability is compromised to the point that it cannot maintain cardiac output and tissue perfusion
 - 3. Obstructive → caused by an obstruction in the heart or great vessels that impede venous return or prevents effective cardiac pumping action
 - 4. Distributive → results from widespread vasodilation and decreased peripheral resistance
- 6. What is the by-product of anaerobic metabolism and explain the effects of hypoxia might have in the body (brain, heart, kidneys).
 - Lactic acid
- 7. What are some of the signs and symptoms that indicate that a patient is in shock?
 - Cool, clammy skin

- Pale of ashen skin
- Bluish tinge to the lips of fingernails
- Rapid pulse
- Rapid breathing
- N&V
- Decreased BP
- 8. What form of shock are you most likely to encounter in the Emergency Department? What are some of possible causes?
 - Hypovolaemic shock that may be caused by:
 - Loss of blood volume from haemorrhage
 - o Loss of IV volume from skin due to things like burns
 - Loss of IV volume from severe dehydration
 - o Loss of body fluid from GIT
 - Renal losses of fluid due to use of diuretics or endocrine disorders such as diabetes insipidus

BloodSafe eLearning

- a. What are the components of blood and which circumstances they are indicated?
 - Red cells: transfused to alleviate S&S of anaemia due to blood loss, disease or tx
 - Platelets: used to treat or prevent bleeding in px who have thrombotytopenia or abnormal platelet function (e.g. due to tx with antiplatelet drugs)
 - Plasma: (and fresh frozen plasma) contains coagulation lactors and plasma proteins and is used to treat bleeding or to reduce the likelihood of bleeding
 - **Cryoprecipitate**: contains a number of clothing proteins and s most commonly used to treat bleeding or to reduce the likelihood of bleeding where fibrinogen is low
 - Other: albumin, clotting factor concentrates, formunoglobulins
- b. Which level of haemoglobin (Hb) is a probable benefit for transfusion? When can you get a false Hb reading in practice?
 - A Hb reading of <70g/
 - A false reading can occur when a patient is over/dehydrated, or a specimen is taken from an IV line or from the wrong px
- c. What should the duration of blood transfusion for urgent and non-urgent situation?
 - Urgent as rapidly as the px sody can tolerate
 - Non-urgent -> can be transfused over 1-3 hours but must be finished before 4 hours
- d. Pre-transfusion est such as crossmatch is very important, what are the three crucial points nurses should be ocus when collecting a pre-transfusion sample?
 - Positive identification of the px
 - Correct blood test tube
 - Correct labelling
- e. What are the tests the laboratory performs to ensure the donor blood is compatible with the patient?
 - ABO and RhD blood grouping of the px
 - An antibody screen of the px plasma to detect red cell antibodies
 - A crossmatch with the donor blood and the px blood
- f. What are the 3 Ps prior to commence transfusion?
 - Patient
 - Prescription
 - Pack
- g. How do you as a nurse prepare for non-urgent transfusion and monitor your patient during transfusion?
 - → Preparation for administration
 - Prescription is complete