- Configurations with the greatest Jahn-Teller distortion is:
 - \rightarrow Greatest when asymmetry is in the e_g since these point to the ligands.
 - → Common example of something that is JT distorted is Cu(II) complexes.

- The Jahn-Teller effect can cause problems in chelating ligands.
 - \rightarrow K₁ refers to the first ethylenediamine (en) binding to the metal ion similarly to K₂ and K₃.
 - → For Cu(II), the third ethylenediamine molecule, it's not stable because it would result in a lot of ring strain.

Lecture 20: Jahn-Teller Effect II

- Many reasons why K₁>K₂>K₃- one is for statistical reasons, more sites where ethylenediamine can bind for K₁
 but for Cu(II), tetragonal distortion from the JT effect makes it too strained if there are three (en) ligands.
- [Cu(en)₃]²⁺ does not display a detectable distortion because the distortions are constantly changing this is called *Dynamic Jahn-Teller effect*.
 - → If measured at an instant, you will see the Jahn-Teller effect but if measured over time and averaged, you won't see any distortion.

Paul King Page 5

- → Tetragonal distortion alternates very rapidly in the x, y, and z axes.
- Bond lengths to ligands can be different even if it's not Jahn-Teller distorted.
 - \rightarrow For trans-[CoCl₂(NH₃)₄]⁺ is a low spin d⁶ complex so it should not show JT effects but is tetragonal in geometry.
 - → This is due to Cl being a weaker field ligand than NH₃ so there's a less powerful effect along the z-axis.
- For d⁸, it is usually square planar if there are strong field ligands and it seems to be always true for Pt(II).
 - ightarrow For 4d and 5d, even weak field ligands can cause square planar geometry.
 - → All of them have low spin no high-spin square planar complexes are known.
 - → It is a result of extreme tetragonal distortion.
 - \rightarrow In 3d metals, you need a strong field (eg CN ligands) to distort the configuration enough for the square planar arrangement to be seen (eg [Ni(CN)₄]²⁻].

- The stronger the field that is applied to the d_{x2-y2} orbital, the bigger the splitting.
 - → Other orbital will be lowered in energy, resulting in stabilisation.

• The transition between d_{xy} and d_{x2-y2} corresponds to 10Dq.

Paul King Page 6

- d-orbital splitting for gold is much larger than for copper for d^9 gold(II), an electron is forced to occupy the very high energy d_{d2-y2} orbital which is unfavourable and so there is a tendency for it to lose the electron to make gold(III).
 - → This is why 3+ is the most common oxidation state for gold.
 - → It can also gain an electron to fill all of the orbitals but losing an electron is more common.

The energy levels of *d*-orbitals in crystal fields of different symmetries

CN	Geometry	d_z^2	$d_{x}^{2} - y^{2}$	d_{xy}	d_{xz}	d_{yz}
1	linear ^a	5.14	-3.14	-3.14	0.57	0.57
2	lineara	10.28	-6.28	-6.28	1.14	1.14
3	trigonalb	-3.21	5.46	5.36	-3.86	-3.86
4	tetrahedral	-2.67	-2.67	1.78	1.78	1.78
4	square planar ^b	-4.28	12.28	2.28	-5.14	-5.14
5	trigonal bipyramid ^c	7.07	-0.82	-0.82	-2.72	-2.72
5	square pyramid ^c	0.86	9.14	-0.86	-4.57	-4.57
6	octahedron	6.00	6.00	-4.00	-4.00	-4.00
6	trigonal prism	0.96	-5.84	-5.84	5.36	5.36
7	pentagonal bipyramid	4.93	2.82	2.82	-5.28	-5.28
8	cube	-5.34	-5.34	3.56	3.56	3.56
8	square antiprism	-5.34	-0.89	-0.89	3.56	3.56
9	ReH _o structure	-2.25	-0.38	-0.38	1.51	1.51

^a Ligands lie along z-axis. ^b Ligands lie in xy plane. ^c Pyramid base in xy plane.

Lecture 21: Orbital Overlapping

- Ligand field theory is similar to CFT except it takes into account the covalency of ligands.
- In a transition metal, you have many valence orbitals (eg 4s, 4p, 3d) making a total of 9 orbitals.
- Only some orbital overlaps are allowed (d+s, d+p, left), some are not allowed (p+p, d+s, right).
 - → If overlap integral is 0, it is not allowed.

- The 4s orbital overlaps with all six ligands of an octahedral complex.
 - \rightarrow Produces the a_{1g} orbital.

 \rightarrow When the ligands aren't in phase, it's the a_{1g}^* orbital.

Paul King Page 7