## POPH90148: Probability \& Distribution Theory - Notes

## MODULE 1 - Introduction to Probability

## Set Theory

$A \subset B$ (subset); A is contained in B , if every point in A is also in B
$\varnothing$ (null set); subset of every set
$A \cup B$ (union); the set of all points in A or B or both
$A \cap B$ (intersection); the set of all points in both A and B
$A^{\prime}$ (complement); the set of points that are in S (universal set) but not in A
$A \cap B=\varnothing$ (mutually exclusive); disjoint sets that have no points in common
Distributive laws given by:
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

De Morgan's Laws given by:
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

## Probability Axioms

- An experiment is the process by which an observation is made.
- A simple event is an event that cannot be decomposed, corresponding to one and only one sample point (a distinct point).
- The sample space associated with an experiment is the set consisting of all possible sample points.
- A discrete sample space is one that contains either a finite or a countable number of distinct sample points.
- An event in a discrete sample space S is a collection of sample points - that is, any subset of the sample space.

Suppose S is a sample space associated with an experiment. To every event A in S (A is a subset of S ), we assign a number, $P(A)$, called the probability of A , so the following axioms hold:
(A1) $P(A) \geq 0$
(A2) $\mathrm{P}(\mathrm{S})=1$
(A3) For a sequence of pairwise mutually exclusive events in S :
$P\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

## Calculating Probability Using Combinatorics

${ }_{n} \mathbf{P}_{r}=\frac{n!}{(n-r)!}$
${ }_{n} \mathbf{C}_{r}=\frac{n!}{r!(n-r)!}$

- An ordered arrangement of $r$ distinct objects is called a permutation; the number of ways of ordering $n$ distinct objects taken $r$ at a time.

The number of ways of partitioning $n$ distinct objects into $k$ distinct groups is: $N=\left(\begin{array}{c}n \\ n_{1} \\ n_{2}\end{array} \ldots . n_{k}\right)=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}$
The terms in the bracket are called multinomial coefficients because they occur in the expansion of the multinomial term.

The number of combinations of $n$ objects taken $r$ at a time is the number of unordered subsets, each of size $r$, that can be formed from the $n$ objects.

The binomial coefficient is given by:
$\binom{n}{r}$
They are called binomial coefficients because they occur in the binomial expansion:
$(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}$

## Conditional Probability

The conditional probability of an event A, given that event $B$ has occurred, is given by:
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

- If the probability of event $A$ is unaffected by occurrence or non-occurrence of event $B$ then the two events are independent. Formally, this means:
- $P(A \mid B)=P(A)$
- $P(A \cap B)=P(A) P(B)$
- The sensitivity is the probability that someone with a condition will test positive.
- The specificity is the probability that someone without a condition will test negative.
- The positive predictive value is the probability that someone has a condition, given they tested positive.
- The prevalence is the probability of having a condition in a population.
- The Law of Total Probability states that if the sample space, S, has been split into mutually exclusive subsets then the probability of an event $A$ in $S$ can be calculated as:
$P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$
Thus, Bayes Rule is given by:
$P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}$


## MODULE 2 - Discrete Random Variables

## Random Variables

- A random variable is a real-valued function defined on the sample space; it is a variable (measured quantity) whose value is not known ahead of time. The RV assigns a number to each sample point in the sample space.
- A probability distribution assigns a probability to each possible value $y$ of Y.
- A discrete random variable take on a finite or countable number of possible values.

For any discrete probability distribution, the following must be true:

1. $0 \leq p(y) \leq 1$ for all $y$
2. $\sum_{y} p(y)=1$, where the summation is over all values of $y$ with nonzero probability.

## Bernoulli Distribution

Bernoulli distribution is a distribution for a discrete RV that:

- Can take on only two possible values, 0 and 1 .
- $\mathrm{P}(X=1)=p$ and $\mathrm{P}(X=0)=1-p$ for some $p$ in the range $0 \leq p \leq 1$.

The pmf is given by:
$P(X=x)=p^{x}(1-p)^{1-x}$ with mean $\mathrm{E}(X)=p$ and $\operatorname{Var}(X)=p(1-p)$

## Binomial Distribution

The Binomial distribution is a distribution for a discrete RV, denoted by $X \sim \operatorname{Bin}(n, p)$, where, for $x=0,1,2, \ldots, n$ :
$P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$ with mean $\mathrm{E}(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$
A binomial experiment possess the following properties:

1. The experiment consists of a fixed number, $n$, of identical trials.
2. Each trial results in one of two outcomes: success or failure.
3. The probability of success on a single trial is equal to some value $p$ and remains the same from trial to trial.
4. The trials are independent.
5. The random variable of interest is X , the number of successes observed during the $n$ trials.

## Poisson Distribution

The Poisson distribution is a distribution for a discrete RV, denoted by $X \sim \operatorname{Pois}(\lambda)$, where for any $x=0,1,2, \ldots, n$ :
$P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$ with mean $\mathrm{E}(X)=\lambda$ and $\operatorname{Var}(X)=\lambda$
Note that the Poisson distribution often provides a good model for the probability distribution of the number of rare events that occur in space, time, volume or any other dimension.

