

COMP1511 NOTES

T1 2019

C basics

Variables

• 4 bytes are used to store an int variable (32 bits so 232 possible values)

• Note: illegal to store a value outside the range that can be represented

• 8 bytes are used to store a double variable (64 bits so 264 possible values)

• Declare: first time a variable is mentioned, we need to specify its type

• Initialise: before using a variable, we need to assign it a value

• Variable names can be made up of letters, digits and underscores

o Use a lower case to start your variable names

o Note: variable names are CASE SENSITIVE

o Avoid keywords such as if, while, return, int and double

• Using values in printf() and scanf():

o %d – integer value

o %lf (or %g for printf only) – double value

o %x or %X – hexadecimal value (lowercase or uppercase)

• scanf() is used to read in 1 value at a time

#define

• Give constants a name to make your program more readable

• #define statements go at the top of your program after #include statements

• #define names should be in all capitals with underscores (if necessary)

Mathematics in C

• Usual maths operations + - * /

o Use brackets when in doubt of order of operations

o BEWARE: division may not be what you expect

▪ If either number is a double, the result will be a double

▪ Dividing 2 integers is an integer

▪ The fractional part is discarded (NOT ROUNDED)

• % modulo gives the remainder after division

• Other mathematical functions are included in math.h:

o sqrt(), sin(), cos(), log(), exp()

Linux commands

cp – copies files and directories

cp sourceFile destination – copies file

cp -r sourceDir destination – copies directory

mv – moves or renames a file

mv source destination – moves a file

• If destination is an existing file, file is overwritten

• If destination is an existing directory, file is copied into directory

rm – removes a file

rm filename

rm -r directoryName

• Be careful and have backups – no undo or recycling bin

Conditional execution

• There is no Boolean type in C: 0 is FALSE and anything non-zero is TRUE

if and else statement

• if statements allow us to execute code 0 or 1 times

if (expression) {

 statement1;

} else {

 Statement2;

}

• statement1 is executed if expression is non-zero

• statement2 is executed if expression is zero

• Multiple if statements can be chained together with else if (expression)

Relational operators

• > < >= <= != ==

• Be careful with comparing doubles for equality as they are approximations

• Relational operators return: 0 for FALSE and 1 for TRUE

Logical operators

• && (and), || (or), ! (not)

• Always evaluate left-hand side and only evaluate right-hand side if needed

while statement

• While statements execute their body until controlling expression is false

• A loop counter may be used to count loop repetitions and execute n times

int loop_counter = 0

while (loop_counter < 5) {

 printf(“%d”, loop_counter);

 loop_counter++;

}

• Often a sentinel variable is used to stop a while loop when a condition

occurs in the body of the loop

int stop_loop = 0

while (stop_loop != 1) {

 if (expression) {

 stop_loop = 1;

 }

}

• If nesting while loops, a separate loop counter is needed for each loop

Array

• An array is a collection of variables called array elements

o All elements must be the same type and don’t have a name

o Array elements are accessed by the array index

▪ Valid indices for an array with n elements are 0 … n-1

▪ Array elements must be initialised

o Can only scanf/ printf array elements, not whole arrays

// reading arrays

#define ARRAY_SIZE 42

int i = 0;

int array[ARRAY_SIZE] = {0};

while (i < ARRAY_SIZE) {

 scanf(“%d”, &array[i]);

 i++;

}

// printing arrays

#define ARRAY_SIZE 42

int i = 0;

int array[ARRAY_SIZE] = {0};

while (i < ARRAY_SIZE) {

 printf(“%d\n”, array[i]);

 i++;

}

// copying arrays – array assignment is not allowed

int array[5] = {1, 2, 3, 4, 5};

int array2[5];

int i = 0;

while (i < 5) {

 array2[i] = array[i]);

 i++;

}

Arrays of arrays (matrix)

 int matrix[3][3] = { {1, 2, 3}

 {4, 5, 6}

 {7, 8, 9} };

 printf(“%d\n”, matrix[1][1]);

 // read a 2D array

 #define SIZE 42

 int matrix[SIZE][SIZE];

 int i = 0;

 while (i < SIZE) {

 int j = 0;

 while (j < SIZE) {

 scanf(“%d”, &matrix[i][j]);

 j++;

}

i++;

}

 // print a 2D array z

 #define SIZE 42

 int matrix[SIZE][SIZE];

 int i, j;

 i = 0;

 while (i < SIZE) {

 j = 0;

 while (j < SIZE) {

 printf(“%d”, matrix[i][j]);

 j++;

}

printf(“\n”);

i++;

}

Function

• Functions allow you to:

o Separate out and reuse code that serves a single purpose

o Test and verify a piece of code

o Shorten code for easier modification and debugging

• Function prototypes allow a function to be called before it is defined

int function(int x);

o Specifies: return type, name, number and type of parameters

o Allows top-down order of functions for readability

o Allows function definition in separate file

