
COMP10002 SUMMARY

 pg. 1

FOUNDATIONS OF ALGORITHMS

~ UNABRIDGED NOTES

BASICS OF C PROGRAMMING

 Put a semi colon ; after each command if the overall command is not yet

done

 We put int main(int argc, char *argv[]) { before the block of all of our

commands. This is itself a function – we implement all of the block following

main(…) in the code

 To print we write printf(), with \n meaning adding a new line, and \” including

the quotation mark without ending the quote

 Effectively {} now will represent blocks, with the block of code itself nested

inside these braces- we don’t need tabs in C

Calculations

 An improper fraction with two integers will still create a new integer (it will

round down) – you should thereby represent the initial integers as doubles –

You should use variables of the same type under operations

 A calculation with an int and double type will return a double (think of

doubles as infectious). The % operator, however, must be used only with

integers

 For indices: pow(2,3) = 2**3

 There is no built-in indices mechanism within C

 To round a number up use ceil(*number*), floor() for round down

 /= and *= are ‘divide’ and ‘multiply by __ and reassign’ respectfully

Comments

 / * comments comments * /

 / * will begin the comment, * / will end it

 We can comment out a piece of code instead of removing them altogether

COMP10002 SUMMARY

 pg. 2

Variables

 To initialise variables, it must be written as the structure:

 *data type* *VariableName* = “value”
 If we want to assign the variable with multiple data inputs (ie a string will

have multiple characters and is therefore a collection of inputs) we must put

[] directly after the variable name, WITH A NUMBER WITHIN THE BRACKETS,

denoting the maximum amount of data inputs within the variable. This is

called an array (see below):

 We can declare (multiple) variables on a line without associating a value

 int characterage = 35 vs char charactername[5] = “john”
 int = integer; char = single-character string; float = float; double = a more

accurate float, more space

 we don’t have to re-initialise the data type when resetting the variable

 To associate a value with a variable which cannot be altered later in the code

we use const before introducing the data type and variable name: const int
num = 8; OR use #define as outlined below

 static variables, which are declared by writing static before the data type at the

declaration line, are only read once- as such, it will be ignored as the code reads

over it again, meaning the variable will retain the value with which it was initially

initialised, and which may or may not have been altered. Use const instead

 We can use these static variables to, for example, track how many times a function

has been called – include the static int counter as 1 at the start of the function

block. Each time the code runs through, instead of reinitialising to 1, it will

increment.

 #define *vname* *value* will mean you can use the variable name to

represent the value – USE THIS FOR ALL CONSTANTS that will not change. It

should generally be used to introduce magic numbers

Arrays

 When we set a variable to an array we use [] after the variable name, then

represent the different pieces of data around {}, separate them with commas

 We index with [], like python, with 0 being the first element, and we can

modify or add any element in an array by just referencing the (new) index

 In situation where we add to arrays, we must first specify the maximum

space of the array with an integer in the square brackets when first

initialising the variable

 Nested arrays work the same as nested containers in python. When we

introduce a nested array the desired number of array dimensions is the

number of square brackets after the variable name. Each square bracket

should contain the number of elements desired in each dimension/nest

COMP10002 SUMMARY

 pg. 3

Pointers

 Each variable has a memory address, which is the place where C has stored

the value of the variable within the RAM. To access this memory address, we

must type: printf(&p, &*variablename*) In this instance p represents

‘pointer’

 Pointers are another type of data type – it represents a memory address

 To create a pointer variable from a memory address of an already

established variable:

 *data type of established variable* * p*newvariablename* =

&*estab.vname*

 Dereferencing a pointer variable means we’re grabbing the actual value of

the memory address: printf(“%d”, **pointervariablename*)

 & is used to reference a pointer, * to dereference

 To declare a pointer, we must have an asterisk preceding the variable name

in the declaration. THIS MEANS ‘POINTER TO INTEGER TYPE’. (ie int *) Use of

the variable name without the asterisk from here will thus return the

memory address, with it will be the value. Pointers have their own type, ie

int* is of type “pointer to an integer variable”. (Asterisk when initialising

variable means pointer)

 Functions that need to alter their arguments must receive pointers; the

corresponding call of this function must provide addresses of variables of

the same type. This is the way we can store the value of a variable through

scopes

 void* allows untyped pointers – pointers which point to no particular type but

instead to any memory address.

 Scope: variables used within a function are abandoned afterwards, like

python. Variables named the same inside and outside a function are

unrelated, and ignore each other

 The variable which is a pointer’s value is the address in memory. When we

want to dereference, we use an asterisk in front of the variable – this

dereferencing means we are grabbing the value stored at the pointer’s

address. When we want to initialise a pointer, we initialise the variable as the

type whose address it will hold with an asterisk before it, then in a later line,

we set up pvariable = &othervariable, which will grab the address of

othervariable

 In this example, othervariable == *pvariable and &othervariable == pvariable,

meanwhile, pvariable without the asterisk is just the address

 * is for dereferencing, & is for referencing (obtaining address)

 We can alter the address of a pointer variable, but this will affect its

dereferenced value

COMP10002 SUMMARY

 pg. 4

F-Strings

 We need to use f-strings all the time when printing any variable

 we use %*letter* in place of the part of the string we want the variable to

represent, then include the variable/value after the quotation marks, after a

comma: ...”, CharacterName)
 You would have multiple ordered comma-separated values for more than

one f-strings

 We can do calculations in the right-hand side to create new float for printed

string

 If there are multiple desired inputs into the print statements we could just

use {*variablename*} instead of %*letter*

 We can use a field width when printing: %10d means print an integer, to at

least 10 characters, the unused ones are taken by spaces. %8.2f means 8

characters in total, 2 of which after the decimal point. %-20s formats a left-

justified string with at least 20 characters. (Right justified is the default,

given that you specify the width of the line for which it can be right justified.)

 %3d means use up to 3 digits

 %.4f means use 4 digits after the decimal point

 %-6d means left justify

 %-6.2f means 6 digits all up, 2 after decimal, left justify

 %d for what is a character will convert it into ascii code

 %c for k+3 will print the character 3 after k in the ascii code

User Input

 int *variable*; define the variable before scanning

 printf(“Enter your age: “);

 scanf(“%d”, &*variable*); we are storing the inputted age as the variable

 printf(“You are %d years old.”, variable);

 TYPE  scanf CONTROL
STRING FORMAT
DESCRIPTOR

 printf OUTPUT
LETTER

 Integer  %d  %d

 Double  %lf (long float)  %f

 Float  %f  %f

 Exponential  %e  %e

