Pathology Exam Revision Notes

MODULE 1 - CONCEPTS

NOMENCLATURE

Aetiology Pathogenesis Pathology Clinical Manifestations Complications Prognosis Epidemiology

- cause of the disease
- mechanism causing disease
- morphology and molecular changes to tissue
- signs & symptoms
 - secondary, systemic, remote consequences
 - anticipated course of disease
 - incidence, prevalence, disturbance

CELLULAR ADAPTATIONS

Physiological - cellular adaptations to normal stimulation (eg/ hormones/endogenous) *Pathological* - cellular adaptations to stimuli secondary to underlying disease to avoid injury

Hypertrophy

- Increased cell size
- Results in increased organ size
- Results from increased organelles and structural proteins
- Increased demands on cell/work load
- Physiological and Pathological
- Typically in non-dividing cells (myocytes, skeletal muscle)

Hyperplasia

- Increased cell number
- Results in increased organ size
- Typically in proliferating cell types (capable of dividing)
- Physiological and Pathological

Dysplasia

- Decreased cell size/number
- Decreased organ size
- Decreased number of organelles and structural proteins
- Result of decreased work load, limited nutrients & vascularisation/innervation
- Physiological and pathological

Metaplasia

- Change from one differentiated cell to another
- Cells sensitive to stress replaced by cells better able to withstand stress
- Result from pathological adaptations
- Stem cell reprogrammaing
- · Failure to adapt to stress results in injury
- Reversible if stimuli can be removed
- Irreversible if stimuli not removed (death)

INJURY INDUCING STIMULI

- Chemicals Agents
- Physical Agents
- Physical Trauma to Single Gene Defect
- Infectious Agents
- Ageing
- Hypoxia
- Gene Defects
- Nutritional Imbalance
- Immunological Reactions

IRREVERSIBLE INJURY

- Stimuli not removed
- Cell death : apoptosis & necrosis
- Causes: Cell Specific Damage
 - Tissue
 - State
 - Adaptability
 - Genetics
- Causes: Injury Specific Factors
 - Duration
 - Severity
 - Type
- Haematoxylin-Eosin Staining
 - Haematoxylin
 - Basic dye, stain acidic structure purple-blue (nucleic acids)
 - Eosin
 - Acid dye, stain basic structure red-pink (proteins and cytoplasm)
- Morphological Features
 - Loss of membrane integrity plasma (cell contents leak), lysosomal (degrade cytoplasm), mitochondrial (no ATP)
 - Mitochondrial dysfunction cannot be recovered
- Non-functional but viable
- Biochemical changes occur and become non-viable (dead) before macroscopic changes are apparent

REVERSIBLE INJURY

- If stimuli removed cell recovered
- Compromise function of cell/organ
- Morphological Features
 - Cell blebbing
 - ER and Mitochondrial Swelling
 - Cellular Swelling
 - Fatty change
 - Nuclear Alterations

MECHANISMS CAUSING DISEASE

- Decreased ATP
- Result from:
 - Mitochondria dysfunction
 - Decreased Oxygen
 - Toxins
- · Result in:
 - · No energy for cellular functions
 - ATP dependent ion channels fail -> Swelling & blebbing
 - Protein Misfolding (decreased synthesis) —> apoptosis
 - Nuclear chromatin clumping

- Damaged Mitochondria

- Result from:
 - · Influx of calcium
 - Increased ROS
 - Lipid peroxidation
- Result in:
 - Decreased ATP synthesis -> increased ROS -> necrosis
 - Cytochrome C leaves cell -> decreased ATP from ETC -> apoptosis

- Increased ROS
 - · Free radial oxygen with unpaired outer electron orbitals unstable and reactive
 - Attack macromolecules (nucleic acid, proteins, lipids)
 - By-product of respiration, produced by phagocytic leukocytes
 - Removed by scavengers
 - Result in:
 - Oxidative stress
 - Damage to DNA and proteins -> apoptosis
- Increased Calcium
 - Result from:
 - Failure of ATP dependent Calcium channels
 - Damage to intracellular store: ER & mitochondria
 - Result in:
 - Activation of protease/caspase enzymes -> nuclear and membrane damage
 - Increased calcium in mitochondrial -> dysfunction -> apoptosis
- Loss of Membrane Integrity
- Plasma
 - · Cell contents leak
- Lysosomal
 - Cytosol degraded
- Mitochondrial
 - Dysfunction
- Protein and DNA Damage
 - Result from:
 - Drugs, radiation, oxidative stress
 - DNA damage/mutation result in apoptosis if cannot be repaired

NECROSIS

- Irreversible cell death
- Loss of membrane integrity
 - · Leakage of cellular contents into space
 - · Degradation of cellular proteins and organelles
- Mitochondrial dysfunction
- Proteins denatured
- Cell enlargement
 - Swelling of cell, ER and mitochondria
- Breakdown of DNA/nucleus
 - Pyknosis shrinkage/condensation
 - · Karyolysis nucleus disappear / digested away
 - Karyorrhexis fragmentation
- Inflammation
- Pathological

Type of Necrosis

- Coagulative
 - Ischemia Solid Organs
 - Nucleus lost, denatured proteins
 - Tissue architecture preserve
- Liquefactive
- Enzymatic digestion of molecules
- No tissue architecture
- Associated with infection in brain
- Caseous
 - Tissue architecture obliterated
 - Fragmented, lysed cells with amorphous granulation
 - Infection with Mycobacterium tuberculosis