Lecture 7 Notes

AVL Trees

- Good features:
- AVL tree is always reasonably balanced
- height <= 1.44log_2(n)
- complexity for search: $\mathrm{O}(\operatorname{logn})$
- Less ideal features:
- fiddle to code, must keep track of
- insertion path,
- size of all subtrees
- balancing adds time (but constant time)
example of how you might code an AVL tree (insertion)

In [1]:

```
node* insert(node *tree, node* new_node) {
    if (tree == NULL)
        tree = new_node;
    else if (new_node->key < tree->key) {
        tree->left = insert(tree->left, new_node);
        /* filthy lines of left balancing code */
    }
    else {
        tree->right = insert(tree->right, new_node);
        /* filthy lines of right balancing code */
    }
    return tree;
}
```

same basic skeleton as a binary search tree

- AVL trees use rotation to balance
- rotations are a general operation, used in other situations also not just in AVL.
- other methods exist.

other types of balanced trees (non-examinable)

- 2-3-4 Tree, or B-tree
- B+-trees
- red-black tree

Access probability

- what if you know some items are searched more frequently than others?
- Static optimization: adjust tree structure to shorten the path to more frequently accessed items
- splay trees - non-examinable

BST: Deletion

- Deletion from a BST involves:
- the in-order predecessor (item immediately before deleted item in sorted order); or - 'rightest' node of its left sub-tree
- the in-order successor
- 'leftest' node of its right sub-tree
- in-order successor and in-order predecessor can be obtained from in-order traversal
- in-order traversal gives the nodes in sorted order

Traverse

- visit every node once
- do something during the visit: e.g
- print node value,
- mark node as visited
- check some property of node
- use in any linked data structure
- tree (a type of graph)
- graph
- list

Traversal: recursive in-order traversal, tree

In []:

```
traverse(struct node *t) {
    if (t!=NULL) {
        traverse(t->left); // traverse entire left of t
        visit(t); // print, mark, check, etc.
        traverse(t->right); // traverse entire right of t
    }
}
```

in-order traversal, you get all the data out of the tree in perfectly sorted order

- for a BST, an in-order traversal prints all nodes in
- key-order
- help you figure out if you want to delete a particular node, which node is its in-order predecessor or in-order successor
- easy rule
- for in-order predecessor: (rightmost node of left subtree)
- first go to left child
- then go as right as possible
- for in-order successor: (leftmost node of right subtree)
- look at right subtree
- go left as far as you can
- may need to go up to parent sometimes if there is no child

Post-order Traversal

```
traverse(struct node *t) {
    if (t!=NULL) {
        traverse(t->left); // traverse entire left of t
        traverse(t->right); // traverse entire right of t
        visit(t); // print, mark, check, etc.
    }
}
```

- not in sorted order, this is how you would free the nodes
- (free left and right nodes before freeing current node)
- can't free a tree by just freeing the root!

Pre-order traversal

In [2]: $\quad \boldsymbol{N}$ traverse(struct node $* \mathrm{t})$ \{ if (t!=NULL) \{
visit(t); // print, mark, check, etc.
traverse(t->left); // traverse entire left of t
traverse(t->right); // traverse entire right of t
\}
$\}$

- can copy the tree
- (inserting nodes in the same order)

BST: deletion

- Step 1: find the node to be deleted (using methods discussed)
- Step 2: delete it!

Three cases for deletion:

- case 1: node is a leaf (most bottom)
- search down the tree, find the leaf, delete, free the node, reset parent to null
- case 2: node has either a left or right child, not both
- just delete it, and replace it with its only child
- case 3: node has both a left and a right child
- need to think about in-order predecessor and successor

Lecture 8 Notes

BST: deletion

- Step 1: find the node to be deleted (using methods discussed)
- Step 2: delete it!

Three cases for deletion:

- case 1: node is a leaf (node without any child)
- search down the tree, find the leaf, delete, free the node, reset parent to null
- case 2: node has either a left or right child, not both
- just delete it, and replace it with its only child
- case 3: node has both a left and a right child
- need to think about in-order predecessor and successor
- either of those can be used to replace the deleted node
- case 3a): two children but one of these have no children
- replace node with the childless child
- case 3b): two children, both have children
- replace node with either in-order predecessor or successor.
- duplicates may cause problems in deletion.

Deletion from bst: analysis

- worst case:
- time to find the node: $O(n)<-$ stick
- time to find the in-order predecessor or successor: $O(n)$
- Total time: O(n)
- average case: (fairly well balanced tree)
- time to find the node: O(logn)
- time to find the in-order predecessor or successor: O(logn)
- Total time: O(logn)

Header Files and Makefiles

- Header files allow
- write a function protocol or definition once
- then use it in different files
- avoid retyping
- include a header by
- \#include "header.h" <-- the ones you write yourself
- \#include <stdio.h> <-- different
- compiling multifile programs
- gcc -o dict1 dict1.c bst1.c
- prone to typing errors
- recompiles everything from the ground up x

Makefiles

- simplify the compilation command
- make dict1
- checks which files have been changed, and only recompile them

```
dict1: dict1.o bst1.o
    gcc -o dict1 dict.o bst1.o
bst1.o: bst1.c bst1.h
    gcc -c -Wall bst1.c
dict1.o: dict1.c dict1.h
    gcc -c -Wall dict1.c
targets: dict1, bst1.o, dict1.o.
dependencies: dict1.o, bst1.o
instructions (recipe): gcc -o dict1 dict.o bst1.o
*make sure each instruction is started with a tab*
```

- for example
- list.h containing:
- definitions
- declaration (linked list struct etc)
- function prototypes
- list.c containing:
- the code for functions declared

Sorting

- sort used in a variety range of cases
- Sort is prophylaxis for search
- most of the times, you sort to make your future search easier

Stable sorting: definition

- stable sorting algorithms maintain relative order of records within equal key values.

Sorting by Counting

- distribution counting:
- unusual approach to sorting
- requires: key values to be within a certain range, lower to upper.
- steps in distribution counting:
- start with array of
- records, or
- keys + pointers to records
- count number of records associated with each key value (lower to upper)
- redistribute array elements
- output: sorted array, stable sort
- preserves order in the original array for same key values
- works well when the range of values is small
- when range, r is in $O(n)$

Look at examples from lecture slides

Complexity

- time:
- worst-case: O(n+range)
- average-case: O(n + range)
- space:
- worst: $\mathrm{O}\left(2^{*}\right.$ range + n)
- distribution counting is fast, but relatively spacious than other comparison-based sortings (O(nlogn))

Lecture 9 Notes - Hash tables

- Dictionary search has been based on key comparisons
- linked list, array, bst, balanced tree

Hash tables

- Search usually takes only 1 (or few) operations
- on average, if managed well, (but very bad worst case)
- probabilistic data structure
- hash the keys, using key \% (range) to put items into the hash table (array)
- usually, range needs to be a prime number to avoid excessive collisions

Circular Array

- Squash the keys to fit into an array:
- A[100]
- store key in A[key\%100]
- Issue: collisions
- key1=200 and key2= 400 both map to $\mathrm{A}[0]$
- Solution: Patterns
- use complicated mapping of keys to disrupt patterns
- prime numbers

Lecture 10 Notes - Hash tables

Hash Functions

- A[hash(item->key)] = item;
- Desirable features and requirements:
- output value within bounds of the array
- should minimize collisions, as far as possible
- should spread items throughout the table
- Prime numbers for array size (range)
- disrupt patterns in data
- spread it throughout the table
- Hash functions for strings
- formula in lecture slides
- hash each character of the string and sum them
- using power of 2 in the hash function
- more efficient and prevent overflow
- Hash tables: key idea
- huge range of possible keys
- e.g. space of possible surnames: $26^{\wedge} n$
- map to a smaller set of array indexs, 0..m-1

Collisions

- Collision: two keys map to the same array index (location)
- h(k1) = h(k2)
- if array SIZE < number of records:
- definitely have collisions
- if array SIZE > number of records:
- often have collisions - and must handle them
- good hash functions have fewer collisions, but can never assume there will not be any

Collision Resolution Methods

1. Chaining
2. Open addressing methods

- linear probing
- double hashing

Linear Chaining

- make each element of the array be a linked list.
- chain every collision using the linked list implementation.
- Insertion
- Best Case: O(1)
- Worst Case: O(1) (for unsorted linear chaining)
- Average Case: O(1)
- Searching
- Best Case: O(1)
- Worst Case: O(n)
- Average Case: O(1)
- Analysis
- Average Case:
- fast lookup when table is not heavily loaded
- Performance degrades as table gets crowded
- eventually degenerates to a linked list
- extra time and space for pointers

Open addressing - linear probing, double hashing

Linear Probing

- if there is a collision, put the item in the next available slot
- when the table is lightly loaded
- not many shifts, it is effective
- as the table gets more and more loaded
- require more shifts
- when the table is full:
- cant put the item in the table, loop forever.
- i.e. failure
- Clustering
- some parts of the table may fill up before other parts, just because of random chance

Double hashing

- instead of shifting by +1 in linear probing, use a second hash function to apply the hash again
- reduces clustering
- consider load factor a
- for n keys, in m cells,
- $a=n / m$

complexity

- Average case, expected time for insertion is:
- Double hashing: 1/(1-a)
- Linear probing: 1/(1-a)^2
- ==> linear probing takes more time usually
- Average case, expected time for lookup(search) is:
- Double hash: $1 / 2$ (1+1/(1-a))
- Linear probing: $1 / 2\left(1+1 /(1-a)^{\wedge} 2\right)$
- double hashing is better usually
- both degrade as table nears full.
- catastrophic failure when table is full.
- performance depends on $a=n / m$. so choice of table size, m, is important

Hash tables: Summary

- $\mathbf{O}(1)$ lookup(search), better than $\mathrm{O}(\log n)$
- but only on average
- and only for small a
- Some bad worst cases:
- table full (open addressing - linear probing, double hashing)
- table near full (open addressing)
- everything hashes to same/similar slot (collision) for all
- Performance degrades:
- for linear chaining, degrades gracefully
- for open address, degrades, then can fail catastrophically.
- cannot retrive items in sorted order
- A good hash function may be computationally expensive
- uses of hashing
- duplicate detection
- plagiarism detection
- cryptography

