Lecture 7 Notes

AVL Trees

» Good features:
= AVL tree is always reasonably balanced
= height <= 1.44log_2(n)
= complexity for search: O(logn)
» Less ideal features:
= fiddle to code, must keep track of
o insertion path,
o size of all subtrees
= balancing adds time (but constant time)

example of how you might code an AVL tree (insertion)

In [1]: M node* insert(node *tree, node* new_node) {
if (tree == NULL)
tree = new_node;
else if (new_node->key < tree->key) {
tree->left = insert(tree->left, new_node);
/* filthy Llines of Lleft balancing code */

}
else {
tree->right = insert(tree->right, new_node);
/* filthy Llines of right balancing code */
}

return tree;

same basic skeleton as a binary search tree

o AVL trees use rotation to balance

« rotations are a general operation, used in other situations also not just in AVL.
» other methods exist.

other types of balanced trees (non-examinable)

e 2-3-4 Tree, or B-tree
o B+-trees
e red-black tree

Access probability

« what if you know some items are searched more frequently than others?
» Static optimization: adjust tree structure to shorten the path to more frequently accessed items

» splay trees - non-examinable

BST: Deletion

« Deletion from a BST involves:
» the in-order predecessor (item immediately before deleted item in sorted order); or
o 'rightest' node of its left sub-tree
= the in-order successor
o 'leftest' node of its right sub-tree
« in-order successor and in-order predecessor can be obtained from in-order traversal
= in-order traversal gives the nodes in sorted order

Traverse

« visit every node once
» do something during the visit: e.g.

= print node value,

= mark node as visited

= check some property of node
« use in any linked data structure

= tree (a type of graph)

= graph

= [ist

Traversal: recursive in-order traversal, tree

In []: M traverse(struct node *t) {
if (t!=NULL) {
traverse(t->left); // traverse entire left of t
visit(t); // print, mark, check, etc.
traverse(t->right); // traverse entire right of t

in-order traversal, you get all the data out of the tree in perfectly sorted order

« for a BST, an in-order traversal prints all nodes in
= key-order
» help you figure out if you want to delete a particular node, which node is its in-order predecessor or in-order successor
» easy rule
= for in-order predecessor: (rightmost node of left subtree)
o first go to left child
o then go as right as possible
= for in-order successor: (leftmost node of right subtree)
o look at right subtree
o go left as far as you can
= may need to go up to parent sometimes if there is no child

Post-order Traversal

In []: M traverse(struct node *t) {

if (t!=NULL) {
traverse(t->left); // traverse entire left of t

traverse(t->right); // traverse entire right of t
visit(t); // print, mark, check, etc.

» notin sorted order, this is how you would free the nodes
« (free left and right nodes before freeing current node)
« can't free a tree by just freeing the root!

Pre-order traversal

In [2]: M traverse(struct node *t) {
if (t!=NULL) {
visit(t); // print, mark, check, etc.
traverse(t->left); // traverse entire left of t
traverse(t->right); // traverse entire right of t

» can copy the tree
 (inserting nodes in the same order)

BST: deletion

» Step 1: find the node to be deleted (using methods discussed)
« Step 2: delete it!

Three cases for deletion:

e case 1: node is a leaf (most bottom)

= search down the tree, find the leaf, delete, free the node, reset parent to null
» case 2: node has either a left or right child, not both

= just delete it, and replace it with its only child
» case 3: node has both a left and a right child

= need to think about in-order predecessor and successor

Lecture 8 Notes

BST: deletion

» Step 1: find the node to be deleted (using methods discussed)
« Step 2: delete it!

Three cases for deletion:

« case 1: node is a leaf (node without any child)
» search down the tree, find the leaf, delete, free the node, reset parent to null
« case 2: node has either a left or right child, not both
= just delete it, and replace it with its only child
» case 3: node has both a left and a right child
= need to think about in-order predecessor and successor
either of those can be used to replace the deleted node
case 3a): two children but one of these have no children
o replace node with the childless child
case 3b): two children, both have children
o replace node with either in-order predecessor or successor.
duplicates may cause problems in deletion.

Deletion from bst: analysis

e worst case:
= time to find the node: O(n) <- stick
= time to find the in-order predecessor or successor: O(n)
= Total time: O(n)
» average case: (fairly well balanced tree)
= time to find the node: O(logn)
= time to find the in-order predecessor or successor: O(logn)
= Total time: O(logn)

Header Files and Makefiles

» Header files allow
= write a function protocol or definition once
= then use it in different files
= avoid retyping
= include a header by
o #include "header.h" <-- the ones you write yourself
o #include <stdio.h> <-- different
» compiling multifile programs
» gcc -o dict1 dict1.c bst1.c
= prone to typing errors
= recompiles everything from the ground up x

Makefiles

« simplify the compilation command
= make dict1
» checks which files have been changed, and only recompile them

dictl: dictl.o bstl.o
gcc -0 dictl dict.o bstl.o

bstl.o: bstl.c bstl.h
gcc -c -Wall bstil.c

dictl.o: dictl.c dictl.h
gcc -c -Wall dictl.c

targets: dictl, bstl.o, dictl.o.

dependencies: dictl.o, bstl.o

instructions (recipe): gcc -o dictl dict.o bstl.o
make sure each instruction is started with a tab

« for example
= [ist.h containing:
o definitions
o declaration (linked list struct etc)
o function prototypes
= [ist.c containing:
o the code for functions declared

Sorting

« sort used in a variety range of cases
» Sort is prophylaxis for search
= most of the times, you sort to make your future search easier

Stable sorting: definition

» stable sorting algorithms maintain relative order of records within equal key values.

Sorting by Counting

« distribution counting:
= unusual approach to sorting
» requires: key values to be within a certain range, lower to upper.
 steps in distribution counting:
= start with array of
o records, or
o keys + pointers to records
= count number of records associated with each key value (lower to upper)
= redistribute array elements
» output: sorted array, stable sort
= preserves order in the original array for same key values
» works well when the range of values is small

= when range, r is in O(n)

Look at examples from lecture slides

Complexity

o time:
» worst-case: O(n+range)
= average-case: O(n + range)
+ space:
= worst: O(2*range + n)
« distribution counting is fast, but relatively spacious than other comparison-based sortings (O(nlogn))

Lecture 9 Notes - Hash tables

« Dictionary search has been based on key comparisons
= linked list, array, bst, balanced tree

Hash tables

» Search usually takes only 1 (or few) operations
= on average, if managed well, (but very bad worst case)
» probabilistic data structure
« hash the keys, using key % (range) to put items into the hash table (array)
» usually, range needs to be a prime number to avoid excessive collisions

Circular Array

» Squash the keys to fit into an array:
= A[100]
= store key in Alkey%100]
 Issue: collisions
= key1= 200 and key2= 400 both map to A[0]
= Solution: Patterns
o use complicated mapping of keys to disrupt patterns
o prime numbers

Lecture 10 Notes - Hash tables

Hash Functions

o A[hash(item->key)] = item;

Desirable features and requirements:
= output value within bounds of the array
= should minimize collisions, as far as possible
= should spread items throughout the table

Prime numbers for array size (range)
= disrupt patterns in data
= spread it throughout the table

Hash functions for strings
» formula in lecture slides
= hash each character of the string and sum them
= using power of 2 in the hash function
o more efficient and prevent overflow
Hash tables: key idea
= huge range of possible keys
o e.g. space of possible surnames: 26”n
= map to a smaller set of array indexs, 0..m-1

Collisions

» Collision: two keys map to the same array index (location)
= h(k1) = h(k2)
« if array SIZE < number of records:
= definitely have collisions
« if array SIZE > number of records:
= often have collisions - and must handle them
» good hash functions have fewer collisions, but can never assume there will not be any

Collision Resolution Methods

1. Chaining

2. Open addressing methods
« linear probing
» double hashing

Linear Chaining

make each element of the array be a linked list.
 chain every collision using the linked list implementation.
 Insertion
= Best Case: O(1)
= Worst Case: O(1) (for unsorted linear chaining)
= Average Case: O(1)
Searching
= Best Case: O(1)
= Worst Case: O(n)
= Average Case: O(1)
Analysis
= Average Case:
o fast lookup when table is not heavily loaded
= Performance degrades as table gets crowded
o eventually degenerates to a linked list
= extra time and space for pointers

Open addressing - linear probing, double hashing

Linear Probing

« if there is a collision, put the item in the next available slot
» when the table is lightly loaded
= not many shifts, it is effective

« as the table gets more and more loaded
= require more shifts
» when the table is full:
= cant put the item in the table, loop forever.
= j.e. failure
e Clustering
= some parts of the table may fill up before other parts, just because of random chance

Double hashing

« instead of shifting by +1 in linear probing, use a second hash function to apply the hash again
 reduces clustering
» consider load factor a

= for n keys, in m cells,

= a=n/m

complexity

» Average case, expected time for insertion is:
= Double hashing: 1/(1-a)
» Linear probing: 1/(1-a)"2
= ==> |inear probing takes more time usually

» Average case, expected time for lookup(search) is:
= Double hash: 1/2 (1+ 1/(1-a))
= Linear probing: 1/2 (1+1/(1-a)"2)
= double hashing is better usually

both degrade as table nears full.
catastrophic failure when table is full.
performance depends on a = n/m. so choice of table size, m, is important

Hash tables: Summary

» O(1) lookup(search) , better than O(log n)

= but only on average
= and only for small a
Some bad worst cases:
= table full (open addressing - linear probing, double hashing)
= table near full (open addressing)
= everything hashes to same/similar slot (collision) for all

Performance degrades:
= for linear chaining, degrades gracefully
» for open address, degrades, then can fail catastrophically.
= cannot retrive items in sorted order

A good hash function may be computationally expensive

uses of hashing
= duplicate detection
= plagiarism detection

= cryptography

	Lecture 7 Notes
	Lecture 8 Notes
	Lecture 9
	Lecture10

