
Lecture 7 Notes

AVL Trees
Good features:

AVL tree is always reasonably balanced
height <= 1.44log_2(n)
complexity for search: O(logn)

Less ideal features:
fiddle to code, must keep track of

insertion path,
size of all subtrees

balancing adds time (but constant time)

example of how you might code an AVL tree (insertion)

In [1]: 

AVL trees use rotation to balance

. . .

node* insert(node *tree, node* new_node) {
 if (tree == NULL)
 tree = new_node;
 else if (new_node->key < tree->key) {
 tree->left = insert(tree->left, new_node);
 /* filthy lines of left balancing code */
 }
 else {
 tree->right = insert(tree->right, new_node);
 /* filthy lines of right balancing code */
 }
 return tree;
}

same basic skeleton as a binary search tree

rotations are a general operation, used in other situations also not just in AVL.
other methods exist.

other types of balanced trees (non-examinable)
2-3-4 Tree, or B-tree
B+-trees
red-black tree

Access probability
what if you know some items are searched more frequently than others?
Static optimization: adjust tree structure to shorten the path to more frequently accessed items

splay trees - non-examinable

BST: Deletion
Deletion from a BST involves:

the in-order predecessor (item immediately before deleted item in sorted order); or
'rightest' node of its left sub-tree

the in-order successor
'leftest' node of its right sub-tree

in-order successor and in-order predecessor can be obtained from in-order traversal
in-order traversal gives the nodes in sorted order

Traverse
visit every node once
do something during the visit: e.g.

print node value,
mark node as visited
check some property of node

use in any linked data structure
tree (a type of graph)
graph
list

Traversal: recursive in-order traversal, tree
In []: 

in-order traversal, you get all the data out of the tree in perfectly sorted order

for a BST, an in-order traversal prints all nodes in
key-order

help you figure out if you want to delete a particular node, which node is its in-order predecessor or in-order successor
easy rule

for in-order predecessor: (rightmost node of left subtree)
first go to left child
then go as right as possible

for in-order successor: (leftmost node of right subtree)
look at right subtree
go left as far as you can

may need to go up to parent sometimes if there is no child

Post-order Traversal

traverse(struct node *t) {
 if (t!=NULL) {
 traverse(t->left); // traverse entire left of t
 visit(t); // print, mark, check, etc.
 traverse(t->right); // traverse entire right of t
 }
}

In []: 

not in sorted order, this is how you would free the nodes
(free left and right nodes before freeing current node)
can't free a tree by just freeing the root!

Pre-order traversal
In [2]: 

can copy the tree
(inserting nodes in the same order)

BST: deletion
Step 1: find the node to be deleted (using methods discussed)
Step 2: delete it!

Three cases for deletion:

case 1: node is a leaf (most bottom)

. . .

traverse(struct node *t) {
 if (t!=NULL) {
 traverse(t->left); // traverse entire left of t
 traverse(t->right); // traverse entire right of t
 visit(t); // print, mark, check, etc.
 }
}

traverse(struct node *t) {
 if (t!=NULL) {
 visit(t); // print, mark, check, etc.
 traverse(t->left); // traverse entire left of t
 traverse(t->right); // traverse entire right of t
 }
}

case ode s a ea (ost botto)
search down the tree, find the leaf, delete, free the node, reset parent to null

case 2: node has either a left or right child, not both
just delete it, and replace it with its only child

case 3: node has both a left and a right child
need to think about in-order predecessor and successor

Lecture 8 Notes

BST: deletion
Step 1: find the node to be deleted (using methods discussed)
Step 2: delete it!

Three cases for deletion:

case 1: node is a leaf (node without any child)
search down the tree, find the leaf, delete, free the node, reset parent to null

case 2: node has either a left or right child, not both
just delete it, and replace it with its only child

case 3: node has both a left and a right child
need to think about in-order predecessor and successor
either of those can be used to replace the deleted node
case 3a): two children but one of these have no children

replace node with the childless child
case 3b): two children, both have children

replace node with either in-order predecessor or successor.
duplicates may cause problems in deletion.

Deletion from bst: analysis
worst case:

time to find the node: O(n) <- stick
time to find the in-order predecessor or successor: O(n)
Total time: O(n)

average case: (fairly well balanced tree)
time to find the node: O(logn)
time to find the in-order predecessor or successor: O(logn)
Total time: O(logn)

Header Files and Makefiles
Header files allow

write a function protocol or definition once
then use it in different files
avoid retyping
include a header by

#include "header.h" <-- the ones you write yourself
#include <stdio.h> <-- different

compiling multifile programs
gcc -o dict1 dict1.c bst1.c

prone to typing errors
recompiles everything from the ground up x

Makefiles
simplify the compilation command

make dict1
checks which files have been changed, and only recompile them

dict1: dict1.o bst1.o
 gcc -o dict1 dict.o bst1.o

bst1.o: bst1.c bst1.h
 gcc -c -Wall bst1.c

dict1.o: dict1.c dict1.h
 gcc -c -Wall dict1.c

targets: dict1, bst1.o, dict1.o.
dependencies: dict1.o, bst1.o
instructions (recipe): gcc -o dict1 dict.o bst1.o
make sure each instruction is started with a tab

for example
list.h containing:

definitions
declaration (linked list struct etc)
function prototypes

list.c containing:
the code for functions declared

Sorting
sort used in a variety range of cases
Sort is prophylaxis for search

most of the times, you sort to make your future search easier

Stable sorting: definition
stable sorting algorithms maintain relative order of records within equal key values.

Sorting by Counting
distribution counting:

unusual approach to sorting
requires: key values to be within a certain range, lower to upper.
steps in distribution counting:

start with array of
records, or
keys + pointers to records

count number of records associated with each key value (lower to upper)
redistribute array elements

output: sorted array, stable sort
preserves order in the original array for same key values

works well when the range of values is small

when range, r is in O(n)

Look at examples from lecture slides

Complexity
time:

worst-case: O(n+range)
average-case: O(n + range)

space:
worst: O(2*range + n)

distribution counting is fast, but relatively spacious than other comparison-based sortings (O(nlogn))

Lecture 9 Notes - Hash tables
Dictionary search has been based on key comparisons

linked list, array, bst, balanced tree

Hash tables

Search usually takes only 1 (or few) operations
on average, if managed well, (but very bad worst case)

probabilistic data structure
hash the keys, using key % (range) to put items into the hash table (array)
usually, range needs to be a prime number to avoid excessive collisions

Circular Array

Squash the keys to fit into an array:
A[100]
store key in A[key%100]

Issue: collisions
key1= 200 and key2= 400 both map to A[0]
Solution: Patterns

use complicated mapping of keys to disrupt patterns
prime numbers

Lecture 10 Notes - Hash tables

Hash Functions

A[hash(item->key)] = item;
Desirable features and requirements:

output value within bounds of the array
should minimize collisions, as far as possible
should spread items throughout the table

Prime numbers for array size (range)
disrupt patterns in data
spread it throughout the table

Hash functions for strings
formula in lecture slides
hash each character of the string and sum them
using power of 2 in the hash function

more efficient and prevent overflow
Hash tables: key idea

huge range of possible keys
e.g. space of possible surnames: 26^n

map to a smaller set of array indexs, 0..m-1

Collisions

Collision: two keys map to the same array index (location)
h(k1) = h(k2)

if array SIZE < number of records:
definitely have collisions

if array SIZE > number of records:
often have collisions - and must handle them

good hash functions have fewer collisions, but can never assume there will not be any

Collision Resolution Methods

1. Chaining
2. Open addressing methods

linear probing
double hashing

Linear Chaining

make each element of the array be a linked list.
chain every collision using the linked list implementation.
Insertion

Best Case: O(1)
Worst Case: O(1) (for unsorted linear chaining)
Average Case: O(1)

Searching
Best Case: O(1)
Worst Case: O(n)
Average Case: O(1)

Analysis
Average Case:

fast lookup when table is not heavily loaded
Performance degrades as table gets crowded

eventually degenerates to a linked list
extra time and space for pointers

Open addressing - linear probing, double hashing

Linear Probing

if there is a collision, put the item in the next available slot
when the table is lightly loaded

not many shifts, it is effective

as the table gets more and more loaded
require more shifts

when the table is full:
cant put the item in the table, loop forever.
i.e. failure

Clustering
some parts of the table may fill up before other parts, just because of random chance

Double hashing

instead of shifting by +1 in linear probing, use a second hash function to apply the hash again
reduces clustering
consider load factor a

for n keys, in m cells,
a = n/m

complexity

Average case, expected time for insertion is:
Double hashing: 1/(1-a)
Linear probing: 1/(1-a)^2
==> linear probing takes more time usually

Average case, expected time for lookup(search) is:
Double hash: 1/2 (1+ 1/(1-a))
Linear probing: 1/2 (1+1/(1-a)^2)
double hashing is better usually

both degrade as table nears full.
catastrophic failure when table is full.
performance depends on a = n/m. so choice of table size, m, is important

Hash tables: Summary
O(1) lookup(search) , better than O(log n)

but only on average
and only for small a

Some bad worst cases:
table full (open addressing - linear probing, double hashing)
table near full (open addressing)
everything hashes to same/similar slot (collision) for all

Performance degrades:
for linear chaining, degrades gracefully
for open address, degrades, then can fail catastrophically.
cannot retrive items in sorted order

A good hash function may be computationally expensive

uses of hashing
duplicate detection
plagiarism detection
cryptography

	Lecture 7 Notes
	Lecture 8 Notes
	Lecture 9
	Lecture10

