HPS203
THE HUMAN MIND EXAM NOTES

Table of Contents

TOPIC 1: INTRODUCTION AND OBJECT RECOGNITION Error! Bookmark not defined.
The Cognitive Revolution Error! Bookmark not defined.
What is introspection and who used it to study mental processes? Error! Bookmark not defined.
What are the two main problems with introspection? Error! Bookmark not defined.
Who was the most prominent behaviourist?. Error! Bookmark not defined.
What sort of data did behaviourists examine? Error! Bookmark not defined.
What is the main problem with using a behaviourist approach to studying mental processes?... Error!
Bookmark not defined.
Explain Kant's transcendental method and give an example Error! Bookmark not defined.
Explain why the development of computers was important to the cognitive revolution

\qquad
Error!
Bookmark not defined.
Form PerceptionError! Bookmark not defined.
What do ambiguous or reversible figures (such as the Necker cube) tell us about perception? .. Error!Bookmark not defined.
Explain why we need object recognition Error! Bookmark not defined.
Describe the Gestalt approach and the following concepts: figure/ground, similarity, proximity, good
continuation, closure, and simplicity Error! Bookmark not defined.
Explain how we know that two types of processing occur at the same time: perception of features
and an analysis of the object's configuration Error! Bookmark not defined.
Explain unconscious inference Error! Bookmark not defined.
Explain how constancy can cause perceptual illusions to occur Error! Bookmark not defined.
Object Recognition Error! Bookmark not defined.
Describe bottom-up and top-down processes Error! Bookmark not defined.
Bottom Up Error! Bookmark not defined.
Top Down Error! Bookmark not defined.
How do visual features contribute to object recognition?. Error! Bookmark not defined.
Word RecognitionWhat is the experimental technique used to study word recognition?.. Error! Bookmark not defined.
How does word frequency affect word recognition? Error! Bookmark not defined.How does recency of view affect word recognition? Error! Bookmark not defined.Define the word superiority effect and describe the technique used to establish it... Error! Bookmarknot defined.Why are degrees of well-formedness important in word recognition? .. Error! Bookmark not defined.
Feature Nets

\qquad
Error! Bookmark not defined.
Describe the layout of a feature net and explain how word recognition occurs .. .Error! Bookmark notdefined.
How do bigram detectors account for well-formedness? Error! Bookmark not defined.
How do we recover from the confusion that results from briefly presented stimuli?. Error! Bookmarknot defined.How can we explain the word superiority effect using a feature net? ... Error! Bookmark not defined.How do recognition errors occur for input like "CQRN"?.Error! Bookmark not defined.
What role does distributed knowledge play in the feature net? Error! Bookmark not defined.
Describe the three main descendants from the original feature net model Error! Bookmark not
defined.How does the McClelland and Rumelhart (1981) model accomplish string recognition without bigramdetectors?Error! Bookmark not defined.
How do people recognise objects in the recognition by components (RBC) model? .. Error! Bookmarknot defined.
Why is recognition viewpoint-dependent in the recognition by multiple views model? Error!
Bookmark not defined.
Facial RecognitionWhy do we think that there is a special recognition system for faces? .. Error! Bookmark not defined.What is the evidence for holistic processing of faces?Error! Bookmark not defined.
TOPIC 2: ATTENTION Error! Bookmark not defined.
Selective Attention Error! Bookmark not defined.
Dichotic Listening Error! Bookmark not defined.
The Cocktail Party Effect Error! Bookmark not defined.
Inattentional Blindness Error! Bookmark not defined.
Change Blindness Error! Bookmark not defined.
Early vs Late Selection Error! Bookmark not defined.
Priming Attention Error! Bookmark not defined.
Repetition Priming Error! Bookmark not defined.
Experiment Error! Bookmark not defined.
Expectation Priming Error! Bookmark not defined.
Costs and Benefits Error! Bookmark not defined.
Focusing Spatial Attention Error! Bookmark not defined.
Divided Attention Error! Bookmark not defined.
Allport, Antonis and Reynolds Study - words though headphones to shadow Error! Bookmark not defined.
Executive Control Error! Bookmark not defined.
Practice Error! Bookmark not defined.
Practice Diminishes Resource Demand Error! Bookmark not defined.
Stroop Effect Error! Bookmark not defined.
TOPIC 3: WORKING MEMORY 8
Acquisition, Storage and Retrieval 8
Working Memory 8
Modal Model 8
Short Term Memory (working memory) 8
Serial Position Effect 9
Recency Effect 10
Primacy Effect 10
Delay Affect 10
Presentation Speed 10
Measuring Working Memories Capacity Error! Bookmark not defined.
Digit Span Error! Bookmark not defined.
Operation Span Error! Bookmark not defined.
Components of Working Memory Error! Bookmark not defined.
Phonological Loop Error! Bookmark not defined.
Central Executive Error! Bookmark not defined.
Visuospatial sketchpad. Error! Bookmark not defined.
Long Term Memory Error! Bookmark not defined.
Episodic Buffer Error! Bookmark not defined.
Entering Long Term Memories Error! Bookmark not defined.
Organising and Remembering
TOPIC 4: ENCODING AND RETRIEVAL
The Importance of Context Error! Bookmark not defined.
Retrieval Paths Error! Bookmark not defined.
Godden and Baddeley's (1975) context-dependent learning experiment - learning in different
environments Error! Bookmark not defined.
Encoding Specificity. Error! Bookmark not defined.
Barclay et al (1974) - Piano.
The Memory Network Error! Bookmark not defined.
Spreading Activation Error! Bookmark not defined.
Meyer and Schvaneveldt's (1971) semantic priming experiment Error! Bookmark not defined.
Memory Testing and Implicit Memory Error! Bookmark not defined.
Recall vs Recognition Error! Bookmark not defined.
Familiarity and Source Memory Error! Bookmark not defined.
Explicit and Implicit Memory. Error! Bookmark not defined.
False Fame Effect. Error! Bookmark not defined.
Illusion of Truth Effect. Error! Bookmark not defined.
Processing Fluency. Error! Bookmark not defined.
The Nature of Familiarity Error! Bookmark not defined.
Hierarchy of Memory Error! Bookmark not defined.
Amnesia Error! Bookmark not defined.
Korsakoff's Syndrome Error! Bookmark not defined.
Can there be Explicit Memory without Implicit Memory? Error! Bookmark not defined.
TOPIC 5: REMEMBERING COMPLEX EVENTS 11
Memory Errors 11
Memory Errors - Hypothesis. 11
Brewer \& Treyens (1981) - Office, no books Error! Bookmark not defined.
Understanding Helps and Hurts Memory Error! Bookmark not defined.
Owens et al (1979) - Reading a Prologue Error! Bookmark not defined.
Deese (1959); Rodiger and McDermott (1995) - DRM Procedure (similar words) Error! Bookmark notdefined.
Understanding Helps and Hurts Memory Error! Bookmark not defined.
Schema's Error! Bookmark not defined.
False Memories Error! Bookmark not defined.
Loftus and Paler (1974) - Planting False Memories Error! Bookmark not defined.
Loftus \& Pickrell (1995) - being left at the shops (false memory) Error! Bookmark not defined.
Porter et al. (1999) - Serious events Error! Bookmark not defined.
Wade et al (2002) - false photos Error! Bookmark not defined.
Lindsay et al (2004) - true photos. Error! Bookmark not defined.
Origin of False Memories Error! Bookmark not defined.
Can we tell if it is a true memory? Error! Bookmark not defined.
Forgetting Error! Bookmark not defined.
Reasons for forgetting Error! Bookmark not defined.
Decay Error! Bookmark not defined.
Interference Error! Bookmark not defined.
Retrieval failure Error! Bookmark not defined.
Undoing Forgetting Error! Bookmark not defined.
Autobiographical Memories Error! Bookmark not defined.
Kelley et al. (2002) - adjectives to judge word (I, them, the case of word) Error! Bookmark not
defined.
Emotion... Error! Bookmark not defined.
Brown \& Kulik (1977) - JFK Error! Bookmark not defined.
Hirst et al. (2009) - 9/11. Error! Bookmark not defined.
Traumatic Memories Error! Bookmark not defined.
Very Long-Term Remembering Error! Bookmark not defined.
Bahrick et al. (1975) - High school face match Error! Bookmark not defined.
Conway et al. (1991) - psych course Error! Bookmark not defined.
Ellis et al. (1991) - psych course according to grade. Error! Bookmark not defined.
The Remembrance Bump Error! Bookmark not defined.
TOPIC 6: CONCEPTS Error! Bookmark not defined.
Definitions and Prototypes Error! Bookmark not defined.
Family Resemblance Error! Bookmark not defined.
Prototypes Error! Bookmark not defined.
Testing the Prototype Notion Error! Bookmark not defined.
Graded Membership Error! Bookmark not defined.
Exemplars Error! Bookmark not defined.
Categorisation via Resemblance Error! Bookmark not defined.
Keil (1986) - can a coffee pot/Racoon vs Skunk /Racoon? Error! Bookmark not defined.
Medin et al. (2003) - Gazelle blood Error! Bookmark not defined.
The Knowledge Network Error! Bookmark not defined.
Collins \& Quillian (1969) - Spreading activation Error! Bookmark not defined.
Not explained by Collins \& Quillian. Error! Bookmark not defined.
Propositional Networks and Parallel Distributed Processing (PDP) Error! Bookmark not defined.
Anderson (1980) - The network (all directions) Error! Bookmark not defined.
Parallel Distributed Processing Error! Bookmark not defined.
TOPIC 7: VISUAL KNOWLEDGE Error! Bookmark not defined.
Galton - Self-Report on Image Vividness Error! Bookmark not defined.
Chromomeric Studies Error! Bookmark not defined.
Krosslyn 1976 - Imagining a cat Error! Bookmark not defined.
Krosslyn 1978 - Remember the Map Error! Bookmark not defined.
Shepard et al. 1971 - building blocks Error! Bookmark not defined.
Demand Character Error! Bookmark not defined.
Imagery and Perception Error! Bookmark not defined.
Segal \& Fusella Error! Bookmark not defined.
Types of Imagery Error! Bookmark not defined.
Visual imagery Error! Bookmark not defined.
Spatial imagery Error! Bookmark not defined.
Images and Pictures Error! Bookmark not defined.
Long-Term Visual MemoryCarmichael, Hogan, \& Walters 1932 - circles. Dumbbell, sunglassesError! Bookmark not defined.
Paivio - nouns Error! Bookmark not defined.
Improving Memory Error! Bookmark not defined.
TOPIC 8: JUDGMENT AND REASONINGAvailability and Representativeness...Error! Bookmark not defined.
Attribute Substitution Error! Bookmark not defined.
Attribute Substitution Error! Bookmark not defined.
Availability Heuristic Error! Bookmark not defined.
Representativeness Heuristic Error! Bookmark not defined.
Heuristic's Error! Bookmark not defined.
Gambler's Fallacy Error! Bookmark not defined.
Detecting Covariation Error! Bookmark not defined.
Base Rate Error! Bookmark not defined.
Kahneman \& Tverksy 1973 - engineer vs lawyer + descriptions Error! Bookmark not defined.
Illusion of Covariation Error! Bookmark not defined.
Confirmation Bias Error! Bookmark not defined.
Two Types of Thinking Error! Bookmark not defined.
Factors Error! Bookmark not defined.
Confirmation and Disconfirmation. Error! Bookmark not defined.
What are the differences between inductive and deductive reasoning? Error! Bookmark not defined.Describe confirmation bias and give an example.Error! Bookmark not defined.
Gilovich 1983 - Sports betting confirmation bias Error! Bookmark not defined.Wason (1966, 1968) - Numbers rule (given 3 numbers, what's the rule) Error! Bookmark notdefined.
What is belief perseverance and how do we know that it exists? Error! Bookmark not defined.
Why is people's logical reasoning about invalid syllogisms poor? Error! Bookmark not defined.
Belief Bias Error! Bookmark not defined.
What is the difference in the pattern of results when people are given a traditional four-card task and a more concrete version of this task? Error! Bookmark not defined.
Decision Making Error! Bookmark not defined.
Utility maximisation Error! Bookmark not defined.Tversky \& Kahneman 1981 - US preparing for disease (same results, different ways of putting it)Error! Bookmark not defined.Shafir (1993); Shafir, Simonson, \& Tversky (1993) - reason based choice/child custody Error!Bookmark not defined.
What is affective forecasting? What parts of this forecasting are people good at and what parts arethey poor at?Error! Bookmark not defined.
TOPIC 9: PROBLEM SOLVING AND INTELLIGENCE Error! Bookmark not defined.
Problem Solving Error! Bookmark not defined.
Hill Climbing Error! Bookmark not defined.
Means-End Analysis Error! Bookmark not defined.
Mental Images Error! Bookmark not defined.
Analogy Error! Bookmark not defined.Error! Bookmark not defined.
Problems and Creativity Error! Bookmark not defined.
Functional fixedness Error! Bookmark not defined.
Problem solving set Error! Bookmark not defined.
Case studies of creativity Error! Bookmark not defined.
Wallas 1926-4 states of creative thought Error! Bookmark not defined.
Intelligence Error! Bookmark not defined.
Other Types of Intelligence Error! Bookmark not defined.
Gardner - 8 types of intelligence Error! Bookmark not defined.Error! Bookmark not defined.
Differences in Intelligence Error! Bookmark not defined
Steele \& Aronson - Caucasian vs African American Error! Bookmark not defined.
TOPIC 10: UNCONSCIOUS PROCESSING Error! Bookmark not defined.
Unconscious Process Error! Bookmark not defined.
Cognitive Unconscious Error! Bookmark not defined.
Nisbett and Schacter - electric shock Error! Bookmark not defined.
Introspection Error! Bookmark not defined.
After the fact reconstructions Error! Bookmark not defined.
Nisbett and Wilson - stockings Error! Bookmark not defined.
Amnesia Error! Bookmark not defined.
Blind Sight Error! Bookmark not defined.
Subliminal Perception Error! Bookmark not defined.
Consciousness and Executive Control Error! Bookmark not defined.
Action Slips Error! Bookmark not defined.
Executive Control Error! Bookmark not defined.
Metacognition Error! Bookmark not defined.
Metamemory Error! Bookmark not defined.

TOPIC 3: WORKING MEMORY

Acquisition, Storage and Retrieval

Acquisition - The process of placing new information into long-term memory.
Storage - The state in which a memory, once acquired, remains until it is retrieved. Many people understand storage to be a "dormant" process, so that the memory remains unchanged while it is in storage. Modern theories, however, describe a more dynamic form of storage, in which older memories are integrated with (and sometimes replaced by) newer knowledge.

Retrieval - The process of locating information in memory and activating that information for use.

Working Memory

Modal Model

A nickname for a specific conception of the "architecture" of memory. In this model, working memory serves both as the storage site for material now being contemplated and as the "loading dock" for long-term memory. Information can reach working memory through the processes of perception, or it can be drawn from long-term memory. Once in working memory, material can be further processed or can simply be recycled for subsequent use. This model prompted a large quantity of valuable research, but it has now largely been set aside, with modern theorizing offering a very different conception of working memory.

This is the Modal of Memory form the 1960's. It has 3 stages:

1. Encoding - we receive information from our environment
2. Store - we hold the information in storage
3. Retrieval Phase - where we can access it from storage and bring it back to active use

The first memory receptacle we have is called Sensory Memory - it holds information very briefly, stored as visual input, auditory input. It is about retaining sensory events as an impression in your sensory information.

According to the modal model, when information first arrives, it is stored briefly in sensory memory. This form of memory holds on to the input in "raw" sensory form-an iconic memory for visual inputs and an echoic memory for auditory inputs. A process of selection and interpretation then moves the information into shortterm memory-the place where you hold information while you're working on it. Some of the information is then transferred into long-term memory, a much larger and more permanent storage place.

Short Term Memory (working memory)

We now call it working memory. We do this to emphasise the active nature of it, this memory holds information that we are currently working on. If you're trying to solve an equation, you can hold information in your working memory while you work on a longer equation. If you want to hold on to that information you need to rehearse it.

We can transfer this information to our long-term memory - this holds all of our knowledge and beliefs. Studies show that you can retain information for 40/50 years.

There are 4 main difference regarding Working Memory and Long Term Memory:

1. The size - Working memory is a lot more limited, compared to the enormity of Long term memory
2. Getting info into WM is quite easy compared to LTM
3. Getting information out of WM is much easier than Long term memory - you need the right retrieval queues to access the information in LTM
4. Contents of WM is quite fragile, if someone disrupts your maintained rehearsal you will forget what you are holding onto. The contents of LTM is strong and robust.

Serial Position Effect

Working memory and Long Term Memory are two different stores, we know this because of serial position effect.

If you are read a list of words, what we see is that people can usually remember 12-15 words from a 20-word list. People are likely to remember the first few words on the list (primacy effect) we remember them because they enter working memory and to try to remember the words they are often repeated over and over, paying attention and rehearsing words as they are said. After a while there are too many to pay attention to. This attention and focus for the first few words means they are more likely to be transferred into LTM. So, primacy effect enters LTM.

The words in the middle of the list are often forgotten.

People usually remember the words at the end of the list are often remembered very well, this is the recency effect, you heard the words more recently. You remember these words well because they are the one that you are currently working on in your WM 5-7 words are able to be remembered at once, so words are bumped out as they go.

The U shaped curve is known as the serial position effect.

Recency Effect

This memory contains whatever the person is currently thinking about; and during the list presentation, the participants are thinking about the words they're hearing. Therefore, it's these words that are in working memory. This memory, however, is limited in size, capable of holding only five or six words. Consequently, as participants try to keep up with the list presentation, they'll be placing the words just heard into working memory, and this action will bump the previous words out of working memory. As a result, as participants proceed through the list, their working memories will, at each moment, contain only the half dozen words that arrived most recently. Any words that arrived earlier than these will have been pushed out by later arrivals.

The key idea, then, is that the list's last few words are still in working memory when the list ends (because nothing has arrived to push out these items), and we know that working memory's contents are easy to retrieve. This is the source of the recency effect.

Primacy Effect

Words arriving later in the list receive even less attention. Once six or seven words have been presented, the participants need to divide their attention among all these words, which means that each one receives only a small fraction of the participants' focus. As a result, words later in the list are rehearsed fewer times than words early in the list-a fact that can be confirmed simply by asking participants to rehearse out loud (Rundus, 1971).

This view of things leads immediately to our explanation of the primacy effect-that is, the observed memory advantage for the early list items. These early words didn't have to share attention with other words (because the other words hadn't arrived yet), so more time and more rehearsal were devoted to them than to any others. This means that the early words have a greater chance of being transferred into LTM-and so a greater chance of being recalled after a delay. That's what shows up in these classic data as the primacy effect.

Delay Affect

By manipulating what happens during the delay from after the word list is stated until they have to recall the words.

The Red Line - shows immediate recall and the serial position effect.

The Purple Line - when we ask people to recall the words after a delay of 30 seconds (unfilled delay), this shows the same pattern. It shouldn't affect primacy cause all the same things will happen a delay will not effect this. An unfilled delay shouldn't affect recency effect either because you don't need to fill your working memory with anything else.

The Blue Line - a filled delay, a task such as counting backwards from 201 by 3 's, if you
 have to think about the task you have to keep the number in your working memory and keep going backward. This task takes over our working memory. The new task will disrupt the contents of working memory as it is fragile. There will not be a recency effect because you have disrupted WM.

Presentation Speed

Fast presentation of words means less words are remembered slower words means there is more time to transfer from WM to LTM, people are remembering more words from the start and middle of the list because people have more time to process those words. This does not affect recency

TOPIC 5: REMEMBERING COMPLEX EVENTS

Memory Errors

Those that think they have seen footage of the car chase and death of Princess Diana are experiencing memory errors, because no such footage exists. These are known as crashing memories, they are usually when people are asked about crashes that did not exist.

Crombag et al. (1996) asked if people had asked about the moment people had seen a certain airplane crash into a building, there was no footage of this, yet half of the participants said they had seen it and some even gave great detail about the 'crash'.

Ost et al. (2002) British participants were asked about the footage of Princess Diana, 44% said they had seen it.

This is because our memory is not like a video recorder, and if it would be difficult to do anything in your life. A Russian memory expert (known as ' S ') had a near perfect memory, the problem was he had trouble forgetting, the things he remembered on stage for his memory performances, he would hold onto forever, unable to forget it.

Our system is not designed to remember every single detail, instead it is designed to selectively remember important things. It can sometimes be hard for us to remember specific details, for example if we have seen a piece of footage.

Memory Errors - Hypothesis

Connections tie together similar episodes, so that a trip to the beach ends up connected in memory to your recollection of other trips. Sometimes the connections tie an episode to certain ideas-ideas, perhaps, that were part of your understanding of the episode, or ideas that were triggered by some element within the episode.

With all these connections in place-element to element, episode to episode, episode to related ideasinformation ends up stored in memory in a system that resembles a vast spider web, with each bit of information connected by many threads to other bits elsewhere in the web. This is the concept of nodes.

However, within this network there are no boundaries keeping the elements of one episode separate from elements of other episodes. The episodes, in other words, aren't stored in separate "files," each distinct from the others. What is it, therefore, that holds together the various bits within each episode? To a large extent, it's simply the density of connections. There are many connections linking the various aspects of your "trip to the beach" to one another; there are fewer connections linking this event to other events.

Connections play a crucial role in memory retrieval. Imagine that you're trying to recall the restaurant you ate at during your beach trip. You'll start by activating nodes in memory that represent some aspect of the tripperhaps your memory of the rainy weather. Activation will then flow outward from there, through the connections you've established, and this will energize nodes representing other aspects of the trip. The flow of activation can then continue from there, eventually reaching the nodes you seek. In this way, the connections serve as retrieval paths, guiding your search through memory.

Obviously, then, memory connections are a good thing; without them, you might never locate the information you're seeking. But the connections can also create problems. As you add more and more links between the bits of this episode and the bits of that episode, you're gradually knitting these two episodes together. As a result, you may lose track of the "boundary" between the episodes. More precisely, you're likely to lose track of which bits of information were contained within which event. In this way, you become vulnerable to what we might think of as "transplant" errors, in which a bit of information encountered in one context is transplanted into another context.

