3012NSC Infectious Disease complete summary 2019

Table of Contents

Module 1A – The Innate Immune System I	2
Module 1B – The Innate Immune System II	2
Module 2A – Parasites I	3
Module 2B – Parasites II	4
Module 3A – Bacteria which cause Gastrointestinal Disease	6
Module 3B – Bacteria which cause Respiratory Disease	8
Module 4A – Viruses	10
Module 5A – Melioidosis	17
Module 5B – Ebola	18
Module 6A – Antimicrobials	19
Module 6B – Vaccination	25

Highlighted text indicates content VERY USEFUL for the exams.

Module 2A - Parasites I

- DALY = YLL + YLD → measure of disease burden in a population
- Infection vs disease why measure infection? → reservoir size, epidemic risk
- Reservoir <u>vs</u> Source vs Vector
- Elimination (local) vs Eradication (global) @ incidence = 0
- Protozoa: unicellular eukaryotes
- Malaria:
 - Transmission: female anopheles mosquito vector
 - Organism: *Plasmodium spp.*
 - P. falciparum (Sub-Saharn Africa) most severe, due to clonal antigenic variation of the PfEMP1 cytoadhesion protein (encoded by ~60 copies of var gene) → cause circulatory thrombosis (autoagglutination, rosetting) + cytoadhesion (avoid spleen)
 - P. vivax (Asia) & P. ovale hypozoite stages can become dormant in the liver → relapsing malaria
 - *P. knowlesi* zoonotic from macaques
 - o **Tropisms:** hepatocytes (asymptomatic stage), erythrocytes (symptomatic stage)
 - CM (young children): high risk due to immune naivety, and waning maternal passive IgG immunity from breastmilk → neurological symptoms, coma, death
 - PAM (pregnant women): Novel placental antigen (chondroitin sulphate A) able to be adhered to by *P. falciparum*'s *Pf*EMP1 → cause malaria even in mothers who have survived it previously
 - Diagnosis:
 - **Light microscopy** training
 - **RDTs** stability, storage
 - **PCR** expertise, electricity
 - O Immunity:
 - Partial acquired immunity follows repeat infection
 - *P. falciparum* heterozygote sickle-cell anaemia carriers
 - P. vivax Duffy -ve blood group explains why P. vivax isn't found in Africa
 - Vaccine: Mosquirix (40% effective) *P.falciparum* protein conjugated to HBV antigen not long-lasting, given to travellers mostly
 - Treatment:
 - Prevention in pregnant women, control mosquito reservoir
 - Gold-standard: ACTs Artemisinin + Piperaquine (resistance is building)
 - At most risk:
 - Children from 3months \rightarrow 5yrs (naivety + waning maternal passive IgG)
 - Travellers (naivety)
 - Pregnant women (even those who have fought it off before)

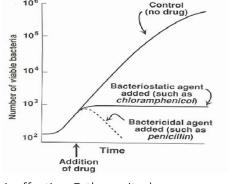
ANTIMICROBIALS

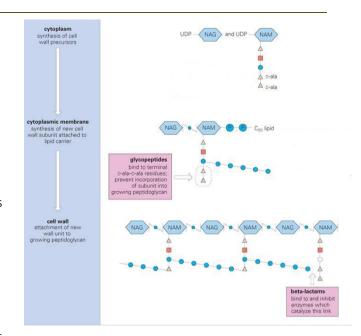
- **Antimicrobial agent:** chemical, chemotherapeutic agent (CTA) or medicine which targets pathogenic microorganisms while causing minimal damage to host tissues (**selective toxicity**)
- Prophylaxis: preventative administration of a CTA to control infection/disease severity of progression early on
- **Pharmacokinetics (PK):** the study of the time course of drug absorption, distribution, metabolism and excretion. "What the body does to the drug".
- **Pharmacodynamics (PD):** the relationship between drug concentration at the site of action, and the resulting physiological effect (time course, intensity, adverse effects). "What the drug does to the body/target".
- The perfect antimicrobial:
 - High selective toxicity
 - o Minimal side-effects
 - o Low (potential for) microbial resistance
 - o Generally fast, long-t_{1/2}, readily available (easily complied with)
 - o Inexpensive
 - Long shelf-life (stability)
 - o Cidal over static activity
- Bactericidal: kills the susceptible microbe (e.g. penicillin)
 - o Key @ dangerous infections: meningitis, endocarditis (host defences ineffective @ these sites)
- Bacteriostatic: inhibits growth of the susceptible microbe, which is then able to be removed by immune system
 - o Therapy duration needs to be long enough to allow for full eradication

ANTIBACTERIAL AGENTS

BACTERIAL CELL WALL SYNTHESIS INHIBITORS

Binds **PBP** (transpeptidase enzyme)


→ Autolysin also involved – stimulated by **β-Lactam binding**


β-Lactam antibiotics (contain β -Lactam ring):

- Penicillins
 - Natural: Penicillins G and V (V is acid stable)
 - O Semi-synthetic: ampicillin, amoxicillin
 - Most GRAM— aren't susceptible
 - Bactericidal (cell lyses)
 - O Resistance: β-Lactamase, transpeptidase mutations
- Cephalosporins
 - o More active against GRAM-
 - o More resistant to β -Lactamase
 - o Semisynthetic (2, 3, 4 generations)
 - Some have good CNS penetration (for GRAM– meningitis)
 - o Resistance: β -Lactamase, transpeptidase mutations, GRAM—permeability issues

- o Fully synthetic β-Lactams
- o Imipenem has severe neuro side-effects, meropenem \rightarrow drug of choice for melioidosis
- o Parenteral admin only hospital-only
- O Resistance: increasing concern @ METALLO-β-Lactamase development
- Monobactams not widely used

