TABLE OF CONTENTS:

Macromolecules 1
Macromolecules 2
Structure of Eukaryotic and Prokaryotic Cells 1
Structure of Eukaryotic and Prokaryotic Cells 2
DNA Structure
DNA Replication
Mutation and Repair of DNA
Mechanism of Transcription
Products of Transcription
The process of translation
Translation of mRNA into Proteins: Codes and components
Protein Structure
Protein Function
Introduction to Cloning
Hybridisation Techniques
Copying DNA and RNA in vitro
Regulation of gene activity in prokaryotes
The Lactose Operon
Positive regulation of the lactose operon
Regulation of eukaryotic gene expression 1
Regulation of gene expression in eukaryotes 2
Regulation of gene expression in eukaryotes 3
Membrane Structure
Cell Membrane Transport I: Diffusion and Osmosis
Cell Membrane Transport II: Carriers and Pumps
Electrical properties of the cell membrane
The Cytoskeleton
Cell Division
Cell Cycle and Apoptosis
Cell Cycle Control by Cyclins and CDKs
Biochemical Messengers
Cellular Protein Trafficking and Secretion
Microbial Biotechnology
Molecular Cell Biology and Disease
Genetic Engineering of Plants

SCIE1106 LECTURE NOTES:

Macromolecules 1:

Molecules-Formation:

- Molecules
 - ⇒ made up of elements
 - ⇒ elements "cannot be broken down or converted into other substances by chemical means"
 - ⇒ chemical element consists of one type of atom
- Atoms
 - ⇒ "smallest particle of an element that still retains the elements distinctive chemical properties"
 - ⇒ Protons positive charge
 - o Atomic number number of protons
 - ⇒ Electrons negative charge
 - o determine atom's chemical behavior
 - o orbit the nucleus of an atom on different energy levels (electron shells)
 - \Rightarrow # of electrons = # of protons
 - ⇒ Neutrons neutral

Molecules-Bond Formation between atoms:

- Electrons fill electron shells from the innermost to the outer shell
- Most atoms have unfilled outermost electron shells
 - ⇒ reactive
- able to donate, accept, or share electrons with each other
 - ⇒ complete outer shell
 - **⇒** stabilized
- chemical=covalent bond formed

Covalent Bonds between Atoms:

- Example H₂O:
 - ⇒ Hydrogen: one electron in outer shell
 - ⇒ Oxygen: six electrons in outer shell
 - ⇒ Sharing the electrons of two hydrogen atoms with electrons of one oxygen results in 2 electrons in outer shells for the two hydrogen atoms and 8 electrons in the outer shell for oxygen
 - o Stable molecular bond

Single and Double Covalent Bonds:

- equal sharing of electrons, e.g. between hydrogen and oxygen or between carbon atoms joins atoms into clusters called molecules
- Ethane molecules, tetrahedral
 - ⇒ 2 electrons shared=single bond