Table of Contents

Week 1 Introduction to Unit & Software	2
Week 2 One-way ANOVA	3
Week 3 Factorial ANOVA	8
Week 4 Repeated Measures ANOVA	13
Week 5 Assumptions, Graphs & Non-parametric Tests	16
Week 6 Correlations and Simple Linear Regression	20
Week 7 Multiple Regression	27
Week 8 Categorical Predictors in Regression	34
Week 9 Interactions and moderation in linear regression (part 1)	35
Week 10 Interactions and moderation in linear regression (part 2)	38
Week 11 Hierarchical Regression & Model Comparisons	41
Week 12 Exam Review	46
SWOTVAC	49

Week 3 - Factorial ANOVA

Overview

Factorial AVOVA

- Involve examining two or more factors (IV's) on a particular dependent variable (DV) called Factorial Designs
- Two-way: 2 factors
- Three-way: 3 factors, etc
- Factors can be
 - Independent-measures
 - Repeated-measures
 - Mixed-model (combination of both)
- Use a numerical code (e.g. 2 x 2) designate the number of levels of each factor
 - 2 x 3 means 2 levels of Factor A, 3 levels of Factor B
 - 2 x 3 x 4, two levels of factor a, 3 levels of factor b, 4 levels of factor c
 - 3 factors = 3-way design

What does a factorial ANOVA tell us?

- Examines the effects of each IV on its own, as well as the combined effects of the factors
- Main effect is the effect of one IV on its own.
- Interaction examines two or more factors at the same time (combined effect which may not be predictable based on the effects of either factor on their own)
- Factorial ANOVAs produce multiple F ratios, one for each main effect and interaction term

Two-way ANOVA

- What happens to DV as Factor A changes in levels?
- What happens to the DV as Factor B changes in levels?
- How do specific combinations of Factor A and B affect the DV?

What is a main effect?

- Mean differences across level of one factor, collapsing (averaging, or sometimes called marginalizing) the other factor(s).
 - Examine one factor's effects, ignoring other factors

		Geogra				
		VIC	NSW	QLD	SA	
Sex	Male	10.60	13.00	9.18	12.36	11.29
	Female	16.07	15.80	13.86	14.08	14.95
		13.33	14.40	11.52	13.22	

Blue numbers are the main effects.

Interactions

- What is their combined effect? May not be predictable based on the effects of either factor on their own
- Whenever mean differences between individual treatment conditions are different from what would be predicted from the overall main effects of the factors.
- E.g. interaction between geographical local and sex will examine whether sex on number of days exercised depends upon geographical location

Possible effects in a 2-way ANOVA

- No effect of A, no effect of B, no interaction effect. (two straight lines at the same level)
 - Very bad result
- Main effect of A, no effect of B, no interaction effect (A is sloping, no B line)
- No effect of A, main effect of B, no interaction effect (two flat parallel lines)
- Main effect of A, main effect of B, no interaction effect (two sloping parallel lines)
- Main effect of A, main effect of B, interaction effect (two sloping lines, different gradients)
- No effect of a, no effect of b, interaction effect (lines are an X shape)
- No effect of a, main effect of b, interaction effect (< shape)
- Main effect of a, no effect of b, interaction effect. (one line straight the other line sloped and intersecting it)
- Graphs are useful but don't show you statistical significance

Contrasts

Planned comparisons

- Variability accounted for by the model is due to differences between the groups (e.g. treatment effects)
 - Can be further broken down to test specific hypotheses about which groups might differ from anotehr
 - Break down the variance according to hypotheses made a priori (before experiment)
 - If hypotheses are independent of one another, family wise type I error will be controlled.
 - When breaking down variance, think of cutting up a a cake you can up slices into smaller bits, but can't stick chunks back together

Choosing contrasts

- 1. Use a control group as reference point
- 2. Only use 2 pieces
- 3. Independence
 - a. Contrasts must not interfere with each other
 - b. Orthogonal

Coding contrasts

- To perform planned comparisons using SPSS/JASP be have to teell it which groups to compare by assigning contrast weights
- These weights form a linear combination of the group means where k = number of groups
- We also choose the weights such the sum of the weights is equal to zero.
 - E.g. '- 1 and +1', or' '-1, +1 and 0', or '+2, -1, and -1'

Guidelines for contrasts

- Choose sensible comparisons
- Groups coded with positive weights will be compared against groups coded with negative
- The num of weights for a comparison should be zero
- If a group is not involved in a comparison, automatically assign it a weight of 0
- For a given contrast, the weights assigned to the groups in a one chunk of a variation should be equal to the number of groups in the opposite chump of variation

Orthogonal contrasts

- Means independent
- Contrasts which all tap into different things
- Not required but facilitates interpretation, because each effect is independent of other effects.
- Two contrasts are orthogonal if the product of their weights sum to zero
- To fully partition the variability for by the model, for k groups, there are k 1 possible orthogonal contrasts
 - E.g. with 4 groups means we have 3 possible orthogonal contrasts, thus 3 contrasts required to fully separate the variance explained by the model.
 - $^{\circ}$ A vs B + C +D --> B vs C+ D --> C vs D (no overlap)

Quiz 2 Prep

In JASP

- ANOVA --> ANOVA
- 'y' --> Dependent variable box
- 'group' --> fixed factors box
- Model --> group --> model terms box
- Assumption checks --> tick homogeneity tests and Q-Q plot of residuals
- Contrasts --> Helmert (I think all are fine but Helmert is orthogonal)
- Post hoc tests --> move group into box on the right, tick effect size, bonferroni, standard
- Additional options --> move groups into box on the right, tick descriptive statistics, estimates
 of effect size, eta squre and omega square

Week 3 Tutorial

- 1. Eta sqaure vs Cohen's d?
 - a. The percentage of the impact vs percentage of the error.
- 2. Independence of observations? Situation where this is violated for ANOVA.

Milestone 1

- Intro
- Method
 - Materials
 - The different questionnaires (NPII, etc.)
 - Procedure
 - The participants did a survey
 - Participants
 - N might be a bit different if some participants are taken out because they didn't fill out a lot of the sections that we're interested in
- Data Analysis Plan

Rubric

- Intro
 - Introduce key concepts, define key terms
 - Key elements: rationale, aim, hypotheses
 - Synthesise data, good linking words
- Method
- Data analysis plan
 - Use subheadings!
 - Data management
 - Check for assumptions, deal with violations, check and deal with outliers
 - How you will transform variables if need be
 - Missing data will be excluded
 - Outliers checked using histograms and box plots
 - Checked with z-score transformation
 - Values producing score of more that x will be considered an outlier
 - Normality will be checked with x test, homogeneity of variance will be checked with x
 - Transformations of continuous variables used to reduce positive/negative skew and unequal variance.
 - Descriptive statistics
 - Which variables, how you will calculate and present
 - M, SD, CI, range, variances obtained for gender, using PSS for each variable,
 - Presented in tabular format
 - Primary analyses
 - These are your main analyses you will be doing, to test your hypotheses make sure they match!
 - E.g. if you are looking at relationship between variables then you are looking at regression as opposied to ANOVA
 - Effect sizes
 - Reference to books that recommend which effect size measurement to use
 - Any supplementary analyses (post hoc tests)
 - Multiple linear regression is the primary statistical test for the hypotheses
 - The predictor variables are x and y with z