Lecture 2

Model Organisms

17 September 2019 / 17:00 / Paul Waters & Bill Ballard

NOTES

Phylogenetic Relationships

Trees

- Come in different shapes and directions
- o E.g. E species is equally related to A, B, C and D
- Model Organism
 - Specific species or Organism
 - o Extensively studied
 - Used to advance our understanding
 - Cellular function
 - Development
 - Disease
 - Ability to apply knowledge to other organisms

- o Current Models:
 - Drosophila (Insect)
 - Mice (Mammalian)
 - Zebrafish (Fish)
 - Yeast (Funghi)
 - E.coli (Bacteria)
 - C.elegans (Worm)
 - Arabidopsis (Plant)
 - Many Other ... (Considered non-traditional models)

Mice

- o Why Mouse?
 - Historical Reasons
 - Now used almost universally
 - Excellent Genomic Resources
 - Well Established tools (Gene Removal)
 - Mammal (~closely related to humans)
 - Easy to breed and keep
 - Most people don't care too much about mice...
 - In the course, the purpose is using X inactivation as a model for epigenetics (regulating a gene)
- Limitations of Mouse Models
 - A mammal but not human,
 - Therefore some diseases that we have cannot be fully modelled in mice, or develop differently
 - Treatments that work in might not work in humans
 - Its genome is very rearranged, which is uncommon between mammalian species
- To choose a model it is necessary to understand the question that is being asked
 - You need a deep understanding of both your question and your model
 - E.g. Mice are a good model for X inactivation as they are mammals, undergo methylation, and have an X chromosome.

BABS2264

Lecture 23

Evolution of Genes and Traits 3

11 November 2019 / 14:00 / Richard Edwards

NOTES

Molecular Phylogenetics

- Classical phylogenetics: Establish relationships between organisms
 - Taxonomy
- Molecular phylogenetics is establishing relationships between genes
 - Orthology
- Placing evolution (and conservation) in context

Topology

- At the terminal node, its a gene or protein sequence
- Longer branches still have the same topology

Branch Lengths

