
 
 

Week 5: fMRI – blood-oxygenated dependent (BOLD) signal is an indirect 
measure of neural activity since neural activity is accompanied by a local 
over-supply in oxygenated blood which is diamagnetic and enhances 
signal.  
 
Statistical parametric mapping is used to fit a general linear model to 
brain activity at each measurement point (voxel) in each condition. Then 
there is a comparison of model fits between the 2 conditions to create a 
statistical map that indicates BOLD signal in voxels in condition A that 
were statistically significantly larger than condition B.  
 
Main advantage of fMRI in cognitive science = localise functions in brain 

Reverse inference problem – deductively invalid inference in that the 
engagement of a particular cognitive process is inferred from activation of 
a particular brain region 

1. In this present study, when task A = brain region Z is active. 
2. In other studies, brain region Z is active to cognitive process X 
3. Therefore, in our study, activity in brain region Z occurs due 

to cognitive process X engaged in task A 
Problem 1 – brain region Z may be active for many tasks (activation not 
exclusive)  
Problem 2 – experimental setup fails to manipulate/operationalise the 
latent cognitive process – meaning we cannot always make valid 
inferences of brain regions for cognitive functions from past studies 
 
‘Multi-Demand’ network (Duncan, 2013) – proportions of neurons 
recruited across the brain that differ by demand and not function for all 
higher-order cognitive processes = no specialised regions. Flexible neural 
properties that dynamically adapt to code specific cognitive 
processes/content of current task.  

Kanwisher (1997) – fusiform face area more active to faces and 
parahippocampal place area more active to places = there is a ‘face’ 
region and ‘place’ region in the brain. But impossible to have a module for 
every object in the brain? We learn more about brain than ‘face 
processing.’ 
 

‘Read out’ or ‘decode’ content of cognitive processes from brain activity. 
Easy classification problem – voxel in FFA peak to face stimuli, and voxel 
in PPA peak to place stimuli. Perhaps, based on the firing of a single 
measurement point (voxel) – we can decode stimuli people are seeing? 
The highest resolution of the brain is a voxel (1 x 1 x 1 mm) which is 
packed with millions of neurons and we assume these are encoding for all 
objects we see.  
 
Cat visual cortex – neighbouring clusters of neurons with similar 
preferences/biases to line orientations. In one voxel, majority of neurons 
prefer vertical. If you show a vertical line = this ‘vertical’ voxel will fire 
more than a ‘horizontal’ voxel with majority of neurons that prefer 
horizontal. Voxels with preferences mapped on V1 = stable and 
reproducible pattern. We don’t need to rely on average BOLD signals – 
we use small biases in voxels and use these meaningful patterns to infer 
the object/cognitive process/content that people are 
representing/processing. This consistent pattern emerges across the 
entire cortex (not specific region).  

Haxby (2001) – suggested no specialised ‘object’ regions in the brain. 
Rather, the brain represents objects as distributed patterns. Correlations 
of distributed representation patterns were higher for within-category 
objects (face vs face) than between-category objects (face vs. cat). This 
pattern held when maximally responsive voxels for faces and places were 
removed. Concluded FFA and PPA may play a role (since very active) but 
the brain represents objects as a distributed code and not modular code.  
 

Haynes & Rees (2005) – Decode line orientation of 
invisible stimuli. Showed that voxels in V1 show weak 
but reliable line orientation preferences. Using 
multivariate pattern recognition, they accumulated 
this weak information across many voxels to yield a 
direct measure of orientation-selective processing. 
They used a visual masking technique of a stimulus 
comprised of a line orientation alternated by a mask 
comprised of opposite line orientation, to prevent 
participants from consciously perceiving line 
orientation of target object. Found that invisible 
oriented stimuli were processed in V1 (not V2 or V3). 
Concludes V1 is not sufficient for consciousness.  

Multivariate pattern analysis (MVPA) – predict the 
content of cognitive processes from brain activity to 
learn more about cognition through neuroimaging. We 
can train machine learning classifiers to learn similarities 
and distinguish between distributed pattern 
representations of objects/stimuli. If this pattern was 
just 2 voxels – chair is represented by greater activation 
of voxel 1 than voxel 2, and piano is represented by 
greater activation of voxel 2 than voxel 1. The classifier 
can draw a hyperplane to separate these data points in 
multidimensional space. We use 90% data to train 
classifier and 10% data to test classifier. ‘Classification 
accuracy’ = % of time classifier correctly predicts the 
cognitive process/content from information in brain 
activity pattern. >50% suggests performance greater 
than chance (statistically significant prediction) and 
<50% suggests prediction was at chance (guessing 
cognitive process from brain activity pattern). 
 
MVPA predicts the content of cognitive processes from 
brain activity. It investigates the similarity of distributed 
activation patterns for different mental processes. We 
want to investigate whether the classifier can predict 
cognitive processes/content from brain activity patterns. 
Hypothesis-free “Searchlight” approach allows us to use 
the classifier to predict cognitive processes/content from 
brain activity patterns at each voxel at a time. Each 
prediction analysis at each voxel gives rise to a 
classification accuracy for every voxel. We map these 
classification accuracies to clusters of voxels to create a 
brain map of information content (not activation).  
 
Voxel – smallest unit of measurement of anatomical 
volume. We take one voxel at a time out of the cluster 
and build a pattern vector. Grayscale = numbers = 
spatial pattern. We give this to a classifier to see if it can 
predict the cognitive process/content from the brain 
activity pattern or not.  

Haynes & Rees (2006) – Decode changes in conscious 
visual perception. When 2 stimuli (red and blue) 
were presented to each eye separately, they cannot 
be perceptually fused. Instead, conscious perception 
alternates between stimuli. Participants pressed one 
of two buttons to indicate which of the 2 stimuli they 
were seeing. Distributed fMRI response patterns 
recorded concurrently showed some regions with 
higher signals during perception of red stimuli and 
other regions with higher signals during perception 
of blue stimuli. A pattern classifier was trained to 
identify phases of red vs. blue dominance based on 
distributed brain response patterns. By applying 
trained classifier to test data, it was possible to 
decode with high accuracy which stimulus the 
participant was currently consciously aware of i.e., 
reliably track changes in conscious perception. Shows 
V1 represents non-changing visual stimuli.  
 

Haynes (2007) – Decoding hidden intentions of 
adding or subtracting numbers. Participants freely 
required to hold the intention (add or subtract) in 
mind during variable delay phase. During this phase, 
brain responses recorded by fMRI. Applied MVPA to 
patterns of brain responses under 2 possible 
intentions (add or subtract). MVPA could accurately 
decode intent (add or subtract) with highest 
decoding accuracy from medial PFC during 
anticipation phase. MVPA could decode intent from 
posterior PFC during execution phase.  

Stokes (2009) – Decode imaginary visual 
experiences. Participants i) viewed and ii) imagined 
letters ‘X’ and ‘O’. MVPA was applied to fMRI 
patterns to show classifier could distinguish between 
activation patterns in anterior and posterior lateral 
occipital complex to the 2 letters ‘X’ and ‘O’ in both 
stimulus-driven perception and visual imagery. 
Cross-generalisation between activation patterns in 
visual cortex underlying perception and imagery – 
suggest that top-down (imagination) and stimulus-
driven mechanisms activate shared neural 
representations within high-level visual cortex. 
 

Horikawa (2013) – Decode content of dreams. Participants fell 
asleep in the fMRI and were woken up during stage 1 & 2 sleep 
and were asked to report objects in their dreams. These objects 
were extracted from an image database. Participants then 
viewed those images in the fMRI again and this was given to 
the classifier as training data. fMRI data during sleep was used 
as test data to see if classifier could decode objects from this 
data which it could. Suggests common lower visual cortex (V1, 
V2, & V3) and higher-order visual cortex (temporal regions) 
involved in both visual perception and visual experiences 
during sleep. 

Soon (2008) – predict free motor decisions. Participants 
in fMRI could freely decide when to press a L or R 
button and required to remember letter on screen at 
time of conscious decision. Researchers used letter as a 
marker to look at neural pattern leading up to it – to 
see how much information each brain region contained 
about outcome of motor decision. Classifiers were 
trained to predict the outcome of a participants’ motor 
decision by recognising specific brain patterns 
associated with each choice. Two brain regions that 
encoded with high accuracy whether the participant 
was about to choose L or R prior to conscious decision 
from anterior medial prefrontal cortex (frontopolar 
cortex) and medial parietal cortex (precuneus to 
posterior cingulate cortex) up to 10 seconds before 
they were aware of conscious decision (haemodynamic 
delay of BOLD taken into account). This suggests that 
when a participant’s decision reached awareness, it had 
been influenced by unconscious brain activity up to 10 
seconds. However, finding may be due to the key press 
- motor urge?  
 
 
 Soon (2013) – predict abstract decisions. Participants in fMRI 
freely required to hold intention in mind to either add or 
subtract and remember letter on screen at moment of 
conscious decision. They performed the chosen arithmetic task 
on numbers in next 2 frames and selected answer on 
subsequent frame. Researchers used letter as a clock to look at 
neural pattern leading up to it. In different brain regions, 
independent classifiers were trained to distinguish between 
spatial patterns of brain activity related to the two intentions. 
The accuracy with which a classifier could predict the specific 
choice revealed whether a particular brain region contained 
information related to the content of the intention at a specific 
point in time. Found that the medial prefrontal cortex (medial 
frontopolar region) and parietal cortex (region between 
precuneus and posterior cingulate region) began to encode the 
outcome of the upcoming decision up to 7 seconds before 
participant was aware of decision (taking into account 
hemodynamic delay). At some point – a pattern starts to build 
and get stronger and crosses a threshold to code for one of the 
decisions. We are probably picking up the evolution of these 
brain activity patterns towards a decision.  
 

4 basic steps in MVPA: 
1. Feature selection – deciding which voxels 

will be included in classification analysis 
(unless searchlight approach) 

2. Pattern assembly – sorting data into 
discrete ‘brain patterns’ corresponding to 
pattern of activity across voxels for an 
experimental condition 

3. Classifier training – feed a subset of fMRI 
data pattern (training data = 90%) into a 
classifier to learn the function 
(hyperplane) that maps between voxel 
activity patterns and experimental 
conditions  

4. Generalisation testing – feed new test 
data (10%) into classifier to see if classifier 
can correctly determine the experimental 
condition associated with that response 
pattern (>50% = accurately predict) 


