LECTURE 3

Regression - note that residuals are sample estimates of population errors
Linear models:

Easy to fit
 Commonly used Practical applicatio

4. Descriptive model
al errors:
tological justification - random fluctuations have good chance of res Epistemological - normal distributions represent state of knowledge
Assumptions:
Validity
$-\quad$ Relevant IVs underlying DV (researcher)
Data will generalise to population
5. Additivity \& Linearity

Data (excluding errors) should be linear (important math assumption)
Transform non-linear data into linear data if linear modelling
3.
4.
4

Independence of errors
 Equal variance of errors (homogeneity \& homoscedasticity/sphericity) impact p values \& estimates Normality of erfors around
 Least important $=$ can over 0)

EDIATION - inherently causal whereby IV acts on DV through MV
- $\quad r_{\text {(1) }}$
 -

(3) $\begin{gathered}c=a^{*} b+c^{\prime} \\ \text { total }=\text { indirect }+ \text { direct }\end{gathered}$ Rearranging, $a^{*} b=c-c^{\prime}$

Baron \& Kenny approach

1. cis significiant (IV predicts DV)
a is significant (IV predicts MV)
bis significant (MV predicts DV)

4 b . $\quad c^{\prime}$ is not significant (full mediation $\mathrm{a}^{*} b$ and $\mathrm{c}^{\prime}>c$)
Issues with causal steps approach
2. $\underset{\substack{\text { NHST } \\ \vdots}}{ }$ \qquad
hypothesis/Type II error)

* Dichotomous - accept/reject (vs. Cl)

$\stackrel{a}{ } a$ and b both being significant does not mean that a^{*} b is significant
Preconditioning that IV predicts $0 V$
$* \quad a^{*} b$ can be significant although c is non-significant ie. there can be a significant mediation effect
without significant total effect
*. Problematic because testing stops when cis non-significant
Critique of partial and complete mediation

1. Attempt at degree of mediation but no numerical importance $=$ subjective ant a^{*} b can be significant
significant total effect
2. Complete mediation implies that mediator completely accounts for IV's effects on DV - doesn't consider other
3. possible mediators or models $\begin{aligned} & \text { Partial and complete is dependent on sample size (small-isht witect sig indirect effed }\end{aligned}$ Partial and complete is dependent on sample size (small-ish n with enough power to detect sig indirect effect
but not enough power to detect sig direct effect) - also non-sig c' doesn't mean $c^{\prime}=0$ since NHST don't work but not e
like this.

Hayes approach: Testing a*b

1. $\begin{aligned} & \text { Instead of testing significance of } c^{\prime}<c \text { this test looks at } \\ & \text { Significance of } \mathrm{a}^{*} \mathrm{t} \\ & \text { Relative size of } \mathrm{a}^{*} \mathrm{~b} \text {, } \mathrm{a} \text { and } \mathrm{b}\end{aligned}$ 2.
2.

Sobel Test (assumes normality)
$\mathrm{H}_{0}: \mathrm{a}^{*} \mathrm{~b}=0$ at population level
$H_{1}: a^{* b}$ not equal to 0 indicating significant mediating/indirect effect
Issues:

1. Low power \quad Difficult to pick up significant effects when there is one at population level
2. Non-normal distributions
3. Non-normal distributions

Bootstrapping (does not assume normality)

Builds Cls around estimates of a*b through repeated sampling from current sample
Single observation in sample data for one particular case might either be used more than once in a sample or not at all in one particular bootstrap sample
Robust to non-normal data
Takes the means of bootstrap samples and plots a distribution Compare means of bootstrap distribution to original distribution Forms lower and upper bounds of Cl

Output

*if results for Sobel test and Bootstrap do not align, trust Bootstrap
Issues for mediation

1. Causal inference

- Regression modelling does not suffice causal effect need more rigorous methods

2. Confounding association

* Existence of other possible mediating variables
* Mediating variable may not even account for causal effect

3. Causal order
. Difficult to determine causal order

* If IV isn't determined through random assignment or manipulation, any sequence of IV, MV and DV must be tested

MODERATION (GLM: regression, two-way ANOVA with 2 categorica predictors and continuous outcome variable)

Standardise IV and MV or centre them with mean of 0

M	M
x	$x \longrightarrow \quad Y$
How (or by what process or mechonism) does X exert its effect on Y ?	When (or under what circumstances) does X exert its effect on Y ?

Mediation (how) and Moderation (when)
Moderation involves an interaction between M and X (looks like multiple regression) $\mathrm{Y}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}+\mathrm{b}_{2} \mathrm{X}+\mathrm{e}$
Conditional effectect siffor the focal predictor

$Y=b_{0}+b_{1} X+b_{2} M+b_{3} X M+e$
$Y=\left(b_{0}+b_{2} M\right)+\left(b_{1}+b_{3} M\right) X+e$
simple interept simple slope
Note that both slope and intercept depend on value of moderator

Output - Test for Significance of Moderator

*interaction of moderator is non-significant
Relationship between IV and DV depends on value of MV
When positive affect is very low at its $16^{\text {th }}$ percentile $(-8.20), \mathrm{X}$ is a strong, negative predictor of Y (effect size $=-.84, \mathrm{p}<.001$).
When positive affect is moderate at its $\mathbf{5 0}$ th percentile (1.24), X is a moderate, negative predictor of Y (effect size -.62, $p<.001$)
When positive affect is very high at its $84^{\text {th }}$ percentile (8.24), X is a weak, negative predictor of Y (effect size $=-.45, \mathrm{p}=.0283$)

At low levels of moderator, there is a stronger negative relationship between IV and DV
At higher levels of moderator, there is a weaker negative relationship between IV and DV

OHNSON \& NEWMAN APPROACH

Identify the value of the moderator variable where the relationship between IV and DV changes from significant to non-significant $(\mathrm{p}=.05)$ however this is somewhat arbitrary - we can assume the relationship just outside of this is still in the same direction (although not significant)

Regression line with upper \& lower Cl bounds

Regression coefficient $=0$

The relationship between IV and DV are no longer significant at values of moderator outside of the 95% CI bounds
$Y=$ values of regression coefficients, $X=$ values of moderator
At low levels of positive affect, physical wellbeing is strongly negatively predicting
satisfaction with life ($\mathrm{R}^{2}=-1.0$)
At higher levels of positive affect, physical wellbeing is weakly negatively
predicting satisfaction with life ($R^{2}=-0.2$)
If you are low in positive affect and high in physical wellbeing, the model predicts you will have low satisfaction with life
In the upper right corner of the graph, 0 is captured in the confidence interval, which maps with at high levels of positive affect, physical wellbeing is no longer a significant predictor of satisfaction with life

