BIOL213 - Principles in Biochemistry - EXAM NOTES

Amino Acids

- Structure:
 - o Alpha carbon
 - Hydrogen atom
 - Amino group
 - o Carboxylic acid
 - o R side chain variable and unique to each amino acid
- Chirality
 - Enantiomers = non-superimposable, mirror images
 - Exist as either D (Clockwise) or L (anticlockwise) form
 - Proteins only contain the L form
 - Achiral = can be rotated & superimposed on its mirror image.
- Classification by R group
 - o Nonpolar, aliphatic
 - Hydrophobic, not water-soluble
 - Includes Glycine, alanine, valine, isoleucine, leucine, proline, methionine.
 - o Polar, uncharged
 - Hydrophilic, weakly polar, soluble in water
 - Includes: Glutamine, asparagine, cysteine, serine, threonine
 - o Aromatic
 - Absorb UV light at 270-28nm = pi bonds in benzene ring + conjugation (resonance structure).
 - Hydrophobic, varying polarity
 - Include: phenylalanine, Tyrosine, Tryptophan.
 - Positively charged (basic) at physiological pH
 - Strongly polar
 - Includes: histidine, Lysine, Arginine
 - Negatively charged (acidic) at physiological pH
 - Strongly polar
 - Includes: Aspartate, Glutamate
- Acid/base characteristics of amino acids
 - o Equilibrium constant (Ka) = tendency of any acid to lose a proton
 - Stronger acids have high Ka's and low pKa.
 - Hendelsen-Hasselbach equation = finding pH of a buffer
 - pH = pKa + log [base/acid]
 - When [base] = [acid], then pH = pKa
 - Concentration of charged and uncharged forms are equal.
 - Buffer capacity = pKa +/- 1 pH unit
 - o Ionization of amino acids
 - Amphoteric (ampholytes) = dual acid/base nature within one molecule.
 - Acidic pH = COOH & NH₃+ (positive charge)
 - o pI>pH
 - Neutral pH = COO- & NH₃+ (neutral charge)
 - \circ pI = pH

- Basic pH = COO- & NH₂ (negative charge)
 - o pI < pH
- Inflection point = pKa is the pH at which the concentration of the charged group is equal to the concentration of the uncharged group.
- Isoelectric point (pI) = pH at which the amino acid has a net neutral charge.
 - Without ionisable R group pI = (pK1 + pK2)/2
 - With ionisable R group pI = $(pK_{R group} + pK2)/2$

Peptides and Proteins

- Structure of proteins
 - Structure of Peptide bonds (covalent, dehydration reaction)
 - Resonance partial sharing of 2 pairs of electrons between the carbonyl O & amide N.
 - Decrease reactivity of peptide bond
 - Exhibits a large dipole moment in favour of the Trans (E) configuration.
 - Carbonyl 0 = partial negative charge
 - Amide N = partial positive charge
 - Rigid and planar
 - Peptide bonds have some double-bond character due to resonance and cannot rotate.
 - Rotation around bonds connected to the alphacarbon is permitted.
 - Rules that define structural patterns of proteins
 - Hydrophobic residues are buried in protein interior, away from aqueous environment.
 - The number of hydrogen bonds and ionic interactions within the proteins are maximized.
 - Levels of protein structure
 - Primary structure
 - Formation of peptide chain via covalently linked peptide bonds between amino acids.
 - Ultimately dictates function.
 - Secondary structures
 - Local spatial arrangement of the polypeptide backbone.
 - Common arrangements:
 - Alpha helix
 - stabilized by hydrogen bonds between C=0 & N-H residues of peptide bonds 4 AAs apart.
 - Polypeptide backbone winds tightly around a longitudinal axis
 - Right-handed helix with 3.6 residues per turn.
 - R groups stick outward from helical backbone.

- Sequence affects helix stability
 - Small hydrophobic residues such as Ala & Leu are strong helix formers.
 - Several Glutamate residues in a row repel one another & untwist = all negatively charged
 - Bulky AAs won't fit closely together in the chain.
 - Pro is a helix breaker = rotation around N-C_{alpha} bond is impossible.
 - Gly is a helix breaker = tiny Rgroup gives too much flexibility

Beta sheet

- Extended length of polypeptide backbone = composed of several beta strands that run alongside each other.
- Stabilized by hydrogen bonds between adjacent segments that can be nearby or distant, or occur between different chains
- Exist as parallel or antiparallel beta sheets
 - Parallel H-bonded strands run in the same direction
 - Results in bent H-bonds, which are weaker.
 - Antiparallel H-bond strands run in opposite directions
 - Results in linear Hbonds = stronger.
- Beta-turns occur whenever strands in beta sheets change direction
 - Can also link alpha-helices to beta-sheets or to each other.
- Random coil = irregular arrangement of polypeptides
 - Looping regions.
- Tertiary structure
 - Overall spatial arrangement of atoms in a protein
 - o Forms 3D structure that dictates function
 - o Involves interactions between R groups.
 - Most proteins require assistance to fold into native conformation = chaperones
- Quaternary structure
 - Occurs in proteins that contain 2 or more separate polypeptide chains, which may be identical or different.

- Formed by assembly of individual polypeptides (subunits) into a larger functional cluster (multimers).
- Stabilized by numerous weak interactions between R group side chains
 - o Largely hydrophobic and polar interactions
 - Further stabilized by disulfide (covalent) bonds
- Interacting AAs are not necessarily next to each other in the primary sequence.
- E.g. Insulin (2 subunits alpha & beta), hemoglobin (4 subunits 2x alpha & 2x beta).
- Major classes of proteins
 - Protein Motifs = basis of protein structural classification
 - Specific arrangement of several secondary structure elements
 - All alpha-helix
 - All beta-sheet
 - Combination
 - Can be found as reoccurring structures in numerous proteins
 - Proteins are made from different motifs folded together
 - Examples:
 - Beta-barrel = twisted beta-sheet
 - Helix-loop-helix
 - Beta-alpha-beta loop
 - Fibrous proteins
 - Polypeptide chains arranged in long, linear strands/sheets
 - Made from a single type of secondary structure either alpha-helix OR beta-sheets.
 - Provide support, shape, external protection
 - Examples:
 - Alpha-keratin
 - o Tough, rigid, hard
 - o Hair, nails, horns
 - Structure = cross-linked alpha-helices
 - Silk fibroin
 - Soft, flexible, non-stretchy
 - Main protein in silk from moths & spiders
 - Structure: non-covalently held beta-sheets with numerous weak interactions.
 - Consists of layers of antiparallel betasheets rich in Ala (allow close packing to give strong structure) & Gly
 - o Globular proteins
 - Polypeptide chains arranged in globe-like bundles
 - Often contain several types of secondary structure combinations of alpha-helices and beta-sheets.
 - Tend to be enzymes & regulatory proteins

- Water-soluble globular proteins e.g. hemoglobin
 Lipid-soluble membranous proteins.