BIOL103 - Exam Lecture Notes

Chemistry of Life

- Element = substance that cannot be broken down into smaller substances by chemical reaction.
 - o 4 elements make up 96% of the living parts of organisms
 - Hydrogen
 - Carbon
 - Oxygen
 - Nitrogen
- Atom = the smallest part of an element, consisting of 3 subatomic particles: protons, neutrons, electrons.
- Properties of water = consequence of polar covalent bonds and hydrogen bonds.
 - High Specific heat
 - Solvent properties
 - Heats of fusion & vaporization
 - Cohesion & adhesion
 - Cohesion = hold together due to hydrogen bonds
 - Adhesion = clinging of one substance to another
 - Surface tension.

Cell Structure

- Microscopy
 - o Light Microscope (limit 250 microm)
 - Uses glass lenses to focus visible light onto an object & collect the light that passes through it.
 - The lens refracts the light so that the image is magnified as it is projected into the eye.
 - Electron Microscope (limit 2microm)
 - Uses magnets to focus a beam of electrons onto preserved tissue.
 - Transmission electron microscope
 - Electron passes through thin sections of preserved tissue & projected onto a phosphorus screen.
 - Specimen is usually stained with atoms of heavy metals, which attach to certain cellular structures, enhancing the electron density of that area.
 - Scanning electron microscope
 - Electron beam scans the surface of the sample, which is usually coated with a thin film of gold.
 - The beam excites electrons on the surface, which are detected by a device that translates the pattern of electrons into an electronic signal to a video screen – 3D image.
- Prokaryotic cells
 - Unicellular = contains everything in it needed to sustain life
 - Characterised by:
 - No membrane-bound nucleus floats in the cytosol.

- DNA in an unbound region called the nucleoid.
- No membrane-bound organelles.
- Cytoplasm bound by the plasma membrane.
- Eukaryotic cells
 - Characterised by having:
 - DNA in a membrane-bound nucleus
 - Membrane-bound organelles
 - Cytoplasm
 - Consists of the cytosol and subcellular components
 - Cytosol = aqueous solution with gel-like consistency
 - Protoplasm = cytoplasm + nucleus.
 - o Plasma Membrane
 - Selectively permeable barrier that allows sufficient passage of oxygen, nutrients and waste.
 - Nucleus Information Centre
 - Nuclear envelope = double-membrane surrounds nucleus
 - Nuclear pores = channel for movement of molecules
 - Contains one/several nucleoli with high concentrations of RNA, proteins, and DNA.
 - Ribosome = RNA/protein complex carry out protein synthesis
 - Free ribosomes located within the cytoplasm
 - Bound ribosomes form rough endoplasmic reticulum.
- Endomembrane system continuous or interconnected by vesicles
 - Nuclear Envelope
 - Endoplasmic reticulum = biosynthetic factory
 - Networks of cisternae (membranous sacs) that extend throughout the cytoplasm.
 - Rough ER continuous with outer nuclear envelope
 - Regions:
 - Smooth ER = lacks ribosomes
 - Synthesise lipids
 - Metabolises carbohydrates
 - o Detoxifies drugs and poisons
 - Stores calcium ions.
 - Rough ER = ribosomes stud its surface
 - Proteins are glycosylated (bonded to CHO) in the ER lumen.
 - Distributes transport vesicles
 - o Golgi apparatus = shipping and receiving centre
 - Each Golgi stack has a distinct polarity, and is surrounded by a cloud of vesicles.
 - Cis face = receiving side
 - Faces cisternae of ER
 - Trans face = shipping side
 - Functions:
 - Modifies products of the ER
 - Manufactures certain macromolecules
 - Sorts & packages materials into transport vesicles.
 - Lysosomes = digestive compartments

- Membrane bound organelles involved in the degradation of macromolecules (in animal cells) = hydrolytic enzymes
- Vacuoles
 - Membrane-bound vesicles that carry out a variety of different functions in different cells.
 - Contain hydrolytic enzymes
 - Storage of nutrients, pigments, or waste materials.
 - Maintenance of turgor pressure
 - Pressure exerted on a plant cell wall by water passing into the cell by osmosis.
- Plasma membrane
- Mitochondria = chemical energy conversion
 - Structure:
 - Double membrane
 - Outer membrane = smooth
 - Inner membrane = convoluted with cristae
 - Matrix (core)
 - Contain free ribosomes
 - Mitochondria DNA = grow/reproduce independently
 - Structural proteins
 - Site for cellular respiration release of energy during the oxidation of sugars and fats = oxidative phosphorylation.
- Chloroplasts = capture light energy
 - o Type of plastid (organelle of plants & algae)
 - o Structure:
 - Thylakoids = membranous sacs, stacked up into a granum
 - Stroma = internal fluid.
 - Contains chloroplast DNA & ribosomes, many enzymes = self-replicate, allow as much as needed.
 - Highly developed internal membranes.
 - o Mobile move around the cell along tracks of the cytoskeleton.
- Peroxisomes: Oxidation
 - Specialised metabolic compartments
 - o Produce hydrogen peroxide (H₂O₂) and convert it to water
- Cvtoskeleton
 - Network of fibres that organize the structure and activities in the cell = facilitates maintenance and remodelling of cell shape.
 - Structure:
 - Microtubules (composed of tubulin polymers)
 - Maintain cell shape, motility, division & organelle/chromosome movement.
 - Microfilaments (composed of actin filaments)
 - Maintain cell shape, motility & division
 - · Cytoplasmic streaming
 - Intermediate filaments (several types composed of a distinct fibrous protein).
 - Maintains cell shape
 - Anchors nucleus & organelles

• Formation of nuclear lamina.

- Cell Wall

- $\circ\quad$ Protects plant cell, maintains its shape & prevents excessive uptake of water.
- $\circ \quad \text{Made of cellulose fibres embedded in polysaccharides \& proteins.}$
- Perforated by Plasmodesmata = channels between adjacent cells