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COMP10001 UNABRIDGED NOTES 

 

Worksheet 0 – Blockly 

- Programs are just a set of statements which are completed in a sequence 

- ie. Turn -> go forward __ steps -> … 

Looping 

- An alternative to repetitive coding- it will repeat a sequence of steps a set amount of times. 

This is a form of control flow 

- The steps which are being repeated are said to be inside the loop 

- The number of iterations is the number of times that the loop is completed 

- We are currently programming for loops, a specific type of loop 

- Nesting Statements: Putting compound statements inside other compound statements (ie. 

Putting a loop inside a loop) 

Conditioning/Control 

- Allowing a continuing of steps if a set of terms is true. The next statement in a sequence may 

be depended on a condition (ie. End if completed 3 times already) 

- Can be structured like if and else, whereby if the ‘if’ steps aren’t completed then the ‘else’ 

steps will be. 

Functions (abstraction) 

- Defining a set of statements/steps, giving it a different input, so, when later called upon by 

calling the defined name, the set of statements will be completed  

- Defining alone will not complete the step sequence 

- You can include variables/arguments in the defined function, meaning that when you call 

upon the function later, you will have to specify the desired variable value (ie. ‘side length’) 

Recursion 

- blocks of code that call themselves with different inputs 

- A step within a sequence can call upon the sequence again itself, sequence-ception 

 

 

Worksheet 1 – Calculations & Variables 

Print 

- One of python’s built-in functions 

- Use delimiters, in this case, quotation marks, to show the start and end of the string of text. 

This will distinguish it from any other type of python code. 
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- If the string of text contains a “ or a ‘ it is best to delimit the string with the other type of 

quotation mark. 

- You can ‘print’ multiple words stuck together using * or + outside of the delimiters. When 

applied to strings, these operations are referred to as concatenation. 

- We can print two things at once by print(a, b) 

- 3 x “ at the end of a string will end the string, at the start of the string, all after “”” will be 

included in the string. You can, therefore, use “ in a string if you also use “ around the 

outside 

- To include quotation marks or slashes in a string, use a \ before them. Ie. \”, \’, \\, \t (tab), \n 

(newline) 

- To work out the length of the string, use print(len(“__”)). (To work out the length, or 

number of digits of, an integer, convert to str first- print(len(str(__))).) 

Variables 

- You can set a string or a value by defining it, or setting a variable equal to it. Put the 

variable/definition to the left of a = sign. Ie. Message = Hello World 

- = in this case is not “is equal to”; it can be translated to “assign to”. 

- The LHS can only be one thing (ie. Not a + 1) 

- We can stack variables by using multiple = signs on the one line. Again, only the very RHS 

can be only one thing. 

- You can assign a different value to a variable later on in a code, you can even use the initial 

variable to change itself (ie. Msg = msg * 2) 

- If a=0, and you assign b=a, then change a to =1, b will still =0. Python is an imperative 

language, meaning the values of variables can only be changed through reassignment. For c 

= d + a, look for the last time we had d and a on the LHS, and use that assignment. This is 

different for item mutation (as opposed to reassignment), in which case b would mutate in 

the same way a has. 

- To avoid this, we could make an immutable, and when assigning b to it, convert it to a 

mutable type, so b is mutable but a still is not 

- Literals: represent only what they literally means. Includes numbers, strings.  

- NAMING VARIABLES RULES: 

1) Must start with a letter or underscore (casing is significant) 

2) Can have only a letter, underscore or number in its name 

3) and, as, assert, break, class, continue, def, del, elif, else, except, F

alse, finally, for, from, global, if, import, in, is, lambda, None, nonl

ocal, not, or, pass, raise, return, True, try, while, with, yield cannot 

be used, as they are built-in prompts (keywords) for python. ‘print’ isn’t a 

keyword, but using it will lose the original function of the word. 

Calculate 

- put print around the calculation again 

- BIDMAS occurs, and calculations which occur first as a result of this hierarchy are said to 

hold higher precedence 

- Parentheses refer to brackets 
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Operator Description 

*= c *= 2 is the same as c = c * 2 

/= c /= 2 is the same as c = c / 2 

+= c += 2 is the same as c = c + 2 

-= c -= 2 is the same as c = c - 2 

//= c //= 2 is the same as c = c // 2 

%= c %= 2 is the same as c = c % 2 

**= c **= 2 is the same as c = c**2 

 

- ** means to the power of 

- 1e+10 means 10 to the power of 10, multiplied by 1. This will be considered float 

- Division of two integers, like 3 / 4, will give a float answer 

- As such, // means divide, and round down answer to integer 

- % is modulo (finds remainder after a division of one number by another). It is on the same 

level as * and / in the BIDMAS hierarchy 

- Python 2 approaches this differently  

- Special character _ refers to the answer value of the previous calculation. 

- For float calculations, some numbers will inevitable have rounding error, whereby the value 

is marginally inaccurate. 

Comment 

- Putting a # before a length of text means that the text is a comment, and is not read by 

python, so is intended for human reading only 

syntax highlighting (i.e. using different colours to represent different constructs in your code) can be 

a strong visual cue when browsing over code, in distinguishing between code and comments. 

 

If you want a command to continue over the line, insert a backslash (\) called an escape character at 

the end of the line.  

Input 

- The input function requires the user interface to input text after a statement, the input 

thereafter designed and set up to be included in a later line of code. (ie. Name = 

input(“What is you name: ”) // print (“hi”, name) 

- The comma here allows distinction to the separate parts of the print 

- Inputs will only deal with strings, so calculations between inputs will only be concatenations 

- We can avoid this dilemma by putting float or int around the input function. ie 

print(int(input(‘what is your age? ’))).  
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- Worksheet 2, Type conversion exercise 2 

 

Worksheet 2 – Types 

Operands: the numbers, values, variables which we operate on. 

We can use expressions (ie. Y, where y = 3) in values where we would otherwise need values, 

however, we cannot include assignment statements (ie. Y = 3) in these places. 

Types 

- Every object has a ‘type’ which defines what functions can be applied to it, as well as 

defining its semantics 

- The types we will see are: complex (complex numbers) 

 

- To determine the object’s type:  

 

- Type Casting: we can convert a literal/variable to a different type to what it is 

 

 


