
COMP10001 SUMMARY

 pg. 1

COMP10001 UNABRIDGED NOTES

Worksheet 0 – Blockly

- Programs are just a set of statements which are completed in a sequence

- ie. Turn -> go forward __ steps -> …

Looping

- An alternative to repetitive coding- it will repeat a sequence of steps a set amount of times.

This is a form of control flow

- The steps which are being repeated are said to be inside the loop

- The number of iterations is the number of times that the loop is completed

- We are currently programming for loops, a specific type of loop

- Nesting Statements: Putting compound statements inside other compound statements (ie.

Putting a loop inside a loop)

Conditioning/Control

- Allowing a continuing of steps if a set of terms is true. The next statement in a sequence may

be depended on a condition (ie. End if completed 3 times already)

- Can be structured like if and else, whereby if the ‘if’ steps aren’t completed then the ‘else’

steps will be.

Functions (abstraction)

- Defining a set of statements/steps, giving it a different input, so, when later called upon by

calling the defined name, the set of statements will be completed

- Defining alone will not complete the step sequence

- You can include variables/arguments in the defined function, meaning that when you call

upon the function later, you will have to specify the desired variable value (ie. ‘side length’)

Recursion

- blocks of code that call themselves with different inputs

- A step within a sequence can call upon the sequence again itself, sequence-ception

Worksheet 1 – Calculations & Variables

Print

- One of python’s built-in functions

- Use delimiters, in this case, quotation marks, to show the start and end of the string of text.

This will distinguish it from any other type of python code.

COMP10001 SUMMARY

 pg. 2

- If the string of text contains a “ or a ‘ it is best to delimit the string with the other type of

quotation mark.

- You can ‘print’ multiple words stuck together using * or + outside of the delimiters. When

applied to strings, these operations are referred to as concatenation.

- We can print two things at once by print(a, b)

- 3 x “ at the end of a string will end the string, at the start of the string, all after “”” will be

included in the string. You can, therefore, use “ in a string if you also use “ around the

outside

- To include quotation marks or slashes in a string, use a \ before them. Ie. \”, \’, \\, \t (tab), \n

(newline)

- To work out the length of the string, use print(len(“__”)). (To work out the length, or

number of digits of, an integer, convert to str first- print(len(str(__))).)

Variables

- You can set a string or a value by defining it, or setting a variable equal to it. Put the

variable/definition to the left of a = sign. Ie. Message = Hello World

- = in this case is not “is equal to”; it can be translated to “assign to”.

- The LHS can only be one thing (ie. Not a + 1)

- We can stack variables by using multiple = signs on the one line. Again, only the very RHS

can be only one thing.

- You can assign a different value to a variable later on in a code, you can even use the initial

variable to change itself (ie. Msg = msg * 2)

- If a=0, and you assign b=a, then change a to =1, b will still =0. Python is an imperative

language, meaning the values of variables can only be changed through reassignment. For c

= d + a, look for the last time we had d and a on the LHS, and use that assignment. This is

different for item mutation (as opposed to reassignment), in which case b would mutate in

the same way a has.

- To avoid this, we could make an immutable, and when assigning b to it, convert it to a

mutable type, so b is mutable but a still is not

- Literals: represent only what they literally means. Includes numbers, strings.

- NAMING VARIABLES RULES:

1) Must start with a letter or underscore (casing is significant)

2) Can have only a letter, underscore or number in its name

3) and, as, assert, break, class, continue, def, del, elif, else, except, F

alse, finally, for, from, global, if, import, in, is, lambda, None, nonl

ocal, not, or, pass, raise, return, True, try, while, with, yield cannot

be used, as they are built-in prompts (keywords) for python. ‘print’ isn’t a

keyword, but using it will lose the original function of the word.

Calculate

- put print around the calculation again

- BIDMAS occurs, and calculations which occur first as a result of this hierarchy are said to

hold higher precedence

- Parentheses refer to brackets

COMP10001 SUMMARY

 pg. 3

Operator Description

*= c *= 2 is the same as c = c * 2

/= c /= 2 is the same as c = c / 2

+= c += 2 is the same as c = c + 2

-= c -= 2 is the same as c = c - 2

//= c //= 2 is the same as c = c // 2

%= c %= 2 is the same as c = c % 2

= c **= 2 is the same as c = c2

- ** means to the power of

- 1e+10 means 10 to the power of 10, multiplied by 1. This will be considered float

- Division of two integers, like 3 / 4, will give a float answer

- As such, // means divide, and round down answer to integer

- % is modulo (finds remainder after a division of one number by another). It is on the same

level as * and / in the BIDMAS hierarchy

- Python 2 approaches this differently

- Special character _ refers to the answer value of the previous calculation.

- For float calculations, some numbers will inevitable have rounding error, whereby the value

is marginally inaccurate.

Comment

- Putting a # before a length of text means that the text is a comment, and is not read by

python, so is intended for human reading only

syntax highlighting (i.e. using different colours to represent different constructs in your code) can be

a strong visual cue when browsing over code, in distinguishing between code and comments.

If you want a command to continue over the line, insert a backslash (\) called an escape character at

the end of the line.

Input

- The input function requires the user interface to input text after a statement, the input

thereafter designed and set up to be included in a later line of code. (ie. Name =

input(“What is you name: ”) // print (“hi”, name)

- The comma here allows distinction to the separate parts of the print

- Inputs will only deal with strings, so calculations between inputs will only be concatenations

- We can avoid this dilemma by putting float or int around the input function. ie

print(int(input(‘what is your age? ’))).

COMP10001 SUMMARY

 pg. 4

- Worksheet 2, Type conversion exercise 2

Worksheet 2 – Types

Operands: the numbers, values, variables which we operate on.

We can use expressions (ie. Y, where y = 3) in values where we would otherwise need values,

however, we cannot include assignment statements (ie. Y = 3) in these places.

Types

- Every object has a ‘type’ which defines what functions can be applied to it, as well as

defining its semantics

- The types we will see are: complex (complex numbers)

- To determine the object’s type:

- Type Casting: we can convert a literal/variable to a different type to what it is

