COMP10001 SUMMARY

COMP10001 UNABRIDGED NOTES

Worksheet 0 — Blockly

- Programs are just a set of statements which are completed in a sequence
- ie.Turn->go forward __ steps ->...

Looping

- An alternative to repetitive coding- it will repeat a sequence of steps a set amount of times.
This is a form of control flow

- The steps which are being repeated are said to be inside the loop

- The number of iterations is the number of times that the loop is completed

- We are currently programming for loops, a specific type of loop

- Nesting Statements: Putting compound statements inside other compound statements (ie.
Putting a loop inside a loop)

Conditioning/Control

- Allowing a continuing of steps if a set of terms is true. The next statement in a sequence may
be depended on a condition (ie. End if completed 3 times already)

- Can be structured like if and else, whereby if the ‘if’ steps aren’t completed then the ‘else’
steps will be.

Functions (abstraction)

- Defining a set of statements/steps, giving it a different input, so, when later called upon by
calling the defined name, the set of statements will be completed

- Defining alone will not complete the step sequence

- You can include variables/arguments in the defined function, meaning that when you call
upon the function later, you will have to specify the desired variable value (ie. ‘side length’)

Recursion

- blocks of code that call themselves with different inputs
- Astep within a sequence can call upon the sequence again itself, sequence-ception

Worksheet 1 — Calculations & Variables

Print

- One of python’s built-in functions
- Use delimiters, in this case, quotation marks, to show the start and end of the string of text.
This will distinguish it from any other type of python code.

pg. 1

COMP10001 SUMMARY

- If the string of text contains a “ or a ‘it is best to delimit the string with the other type of
guotation mark.

- You can ‘print’ multiple words stuck together using * or + outside of the delimiters. When
applied to strings, these operations are referred to as concatenation.

- We can print two things at once by print(a, b)

- 3 x“atthe end of a string will end the string, at the start of the string, all after
included in the string. You can, therefore, use “ in a string if you also use “ around the
outside

- Toinclude quotation marks or slashes in a string, use a \ before them. le. \”, \’, \\, \t (tab), \n
(newline)

- To work out the length of the string, use print(len(“__")). (To work out the length, or
number of digits of, an integer, convert to str first- print(len(str(__))).)

ann

will be

Variables

- You can set a string or a value by defining it, or setting a variable equal to it. Put the
variable/definition to the left of a = sign. le. Message = Hello World

- =inthis case is not “is equal to”; it can be translated to “assign to”.

- The LHS can only be one thing (ie. Not a + 1)

- We can stack variables by using multiple = signs on the one line. Again, only the very RHS
can be only one thing.

- You can assign a different value to a variable later on in a code, you can even use the initial
variable to change itself (ie. Msg = msg * 2)

- If a=0, and you assign b=a, then change a to =1, b will still =0. Python is an imperative
language, meaning the values of variables can only be changed through reassignment. For c
=d + a, look for the last time we had d and a on the LHS, and use that assignment. This is
different for item mutation (as opposed to reassignment), in which case b would mutate in
the same way a has.

- To avoid this, we could make an immutable, and when assigning b to it, convert it to a
mutable type, so b is mutable but a still is not

- Literals: represent only what they literally means. Includes numbers, strings.

- NAMING VARIABLES RULES:

1) Must start with a letter or underscore (casing is significant)
2) Can have only a letter, underscore or number in its name
3) and, as, assert, break, class, continue, def, del, elif, else, except, F

alse, finally, for, from, global, if, import, in, is, lambda, None, nonl
ocal, not, or, pass, raise, return, True, try, while, with, yield cannot
be used, as they are built-in prompts (keywords) for python. ‘print’ isn’t a
keyword, but using it will lose the original function of the word.

Calculate

- put print around the calculation again

- BIDMAS occurs, and calculations which occur first as a result of this hierarchy are said to
hold higher precedence

- Parentheses refer to brackets

pg. 2

COMP10001 SUMMARY

Operator | Description
*= c *= 2isthesameasc = ¢ * 2
/= c /= 2isthesameasc = c / 2
+= c += 2isthesameasc = c + 2
-= c -= 2isthesameasc = c - 2
//= c //= 2isthesameasc =c // 2
%= c %= 2isthesameasc = c % 2
* k= c **= 2isthesame as c = c**2
- **means to the power of
- 1e+10 means 10 to the power of 10, multiplied by 1. This will be considered float
- Division of two integers, like 3 / 4, will give a float answer
- Assuch, // means divide, and round down answer to integer
- % is modulo (finds remainder after a division of one number by another). It is on the same
level as * and / in the BIDMAS hierarchy
- Python 2 approaches this differently
- Special character _ refers to the answer value of the previous calculation.
- For float calculations, some numbers will inevitable have rounding error, whereby the value
is marginally inaccurate.
Comment

- Putting a # before a length of text means that the text is a comment, and is not read by
python, so is intended for human reading only

syntax highlighting (i.e. using different colours to represent different constructs in your code) can be
a strong visual cue when browsing over code, in distinguishing between code and comments.

This is a comment. Below is a line of code:
print("This is a line of code, not a comment")

The next line looks like a command but isn't!
#print("This won't print if you try to run it!")

If you want a command to continue over the line, insert a backslash (\) called an escape character at
the end of the line.

Input

- The input function requires the user interface to input text after a statement, the input
thereafter designed and set up to be included in a later line of code. (ie. Name =
input(“What is you name: ”) // print (“hi”, name)

- The comma here allows distinction to the separate parts of the print

- Inputs will only deal with strings, so calculations between inputs will only be concatenations

- We can avoid this dilemma by putting float or int around the input function. ie
print(int(input(‘what is your age? ’))).

pg. 3

COMP10001 SUMMARY

- Worksheet 2, Type conversion exercise 2

Worksheet 2 — Types

Operands: the numbers, values, variables which we operate on.

We can use expressions (ie. Y, where y = 3) in values where we would otherwise need values,

however, we cannot include assignment statements (ie. Y = 3) in these places.

Types

- Every object has a ‘type’ which defines what functions can be applied to it, as well as

defining its semantics
- The types we will see are: complex (complex numbers)

Type Description

int For whole numbers eg: -3, -5, or 10

float For real numberseg: -3.0,0.5,0r 3.14159

bool The Boolean type. For storing True and False (only
those two values; Booleans allow for no grey areas!).

str(= For chunks of text, e.g.: "Hello, I study Python"
"string")

tuple For combinations of objects,e.g.: (1, 2, 3)or (1.0,
"hello", "frank")

list A more powerful way of storing lists of objects, e.g. [1,
3, 4]Jor[1.0, "hello", "frank"]

dict We will see this later ... maybe you can guess what it
does,e.g. {"bob": 34, "frankenstein": 203}

- To determine the object’s type:

>>> print (type (1))
<type 'int'>

>>> print (type(1.0))
<type 'float'>

- Type Casting: we can convert a literal/variable to a different type to what it is

>>> print (float (1))

i1*0)

>>> print (int (1.5))

1

>>> int('a')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10:

lal

pg. 4

