INFO1110/COMP9001 Introduction to Programming

Contents
INFO1110/COMP9001 Introduction to Programming

Notes from the creator
Aboutthesenotes,

Week 01

Courseoutline e e
Introduction tocomputers L Lo oL o
Using theterminal
Texteditors e e e
The print function e
Variables and Expressions o o L
Operators. e
Assignment
Shorthand assignment
Equality
Booleanoperators L

Truthtableforand. e

Truth tableforor e

Week 02
Datatypes e
More operators
Comparisonoperators e

Naming variables
Deskchecks

Week 03
Conditional flow e
ifkeyword
elif keyword L
elsekeyword
Ternary operator o oo
whileloops. o e
Control flow diagrams L oo

Week 04
Lists e e e e e e e e e
Iterating throughalist
Modifyingalist
Filtering elementsinalist

Week 05
The type function
Functions e
Why use functions? Lo

Examples e
Endingafunction Lo oo
The difference between print and return
Bestpractice
Generalrules.
Docstrings L

Week 06
Streamsand files
Input and outputstreams oo o L oL
Filetypeso
Filepaths o
Filemodes
Opening filesinPython
Reading fromafile o .
Writingtoafile L o o
Using with to automatically closeafile.
Exceptions
Difference between TypeError and ValueError
Using tryand except
Using finally e
Handling multiple exceptions

Week 07

Important keywords Lo o o
Writing assertions o o oo oo oo oo
Writing in/outtests
Comparing floating pointnumbers

Week 08
Listidioms
Reading input until a sentinal value
Finding a specific valueinalist
Counting the number of occurencesinalist
Finding the max/min valueinalist
Filtering alistin-place,
Filtering a list, without mutation

Week 09
Classes . . . v v v i e e e e e e e
Constructors e e e e e e
Instance vs class attributes L
Instance vsclassmethods

Week 10
Testmethodology
Test-driven development o oo oL
Debugging

Week 11 37

Recursion e e e e 37
Why userecursion? L o 37
Why shouldn’t we userecursion? 37
Recap oo 38

Writing a recursive function o Lo oo 38
Cumulativesum e e 38
Factorials e 39

Week 12 40

Listsredux e e e e 40

Iterating througha2Dlist 41

ATTAYS .« o o o 42
Arraysvslists L 42
Why usearrays? e 42

The numpy package 42
Importingnumpy o o o 42
Creating an array innumpy 43
Iterating through a 2D numpy array 43

Week 13 44

Revisionquestions oo oo 44
General programming o o 44
Testing o 45
Functions e 45
Classesandobjects 45
Recursion. 45

Notes from the creator

About these notes

The following notes and examples are written to target Python version 3.4 and above.

Code blocks beginning with %Jbash contain bash commands which can be run in the
terminal.

Tips for doing well in INFO1110/COMP9001:

Although these notes supplement studies and understanding of concepts, learning to
program requires constant practise. This is especially relevant to those new to pro-
gramming. There is no substitute to taking the time to go through problems and cod-
ing yourself. I cannot stress this point enough.

1. Don’t be afraid to make mistakes whilst you're coding

If this is your first time coding, mistakes are inevitable. Don’t be disheartened if
your code doesn’t work straight away or if a concept is hard to grasp. The key
is to perservere, keep going and keep practising. Reframe failures as ways in

which you can learn and grow. Chances are that when you make a mistake, it’s
more likely you'll remember it and then never make the same mistake again.

. Ask for help when you need it

The staff are there to help you. If you don’t quite understand a concept, don’t
just ignore it. Ask for help! It’s better to be constantly asking for help rather
than letting it pile up and realising before the final that you don’t understand
anything at all. If you're afraid of asking in person, you can use Ed, or research
online. There are plenty of resources out there: Stackoverflow, YouTube, online
tutorials, etc.

. Nail the fundamentals

All the concepts build upon each other. Make sure you have a solid grasp of the
fundamentals. Remember that this is an introduction to programming, so you
want to be building a good understanding of the concepts. A good base means
that you are able to learn harder concepts and different languages faster.

. Keep up to date (this includes lecture content and tutorial work)

The workload builds up, so it’s important to keep up to date. It's understandable
that uni gets busy, but try at least to be up to date with the previous week’s work
before the next week starts. This way you aren’t cramming right before a quiz or
an exam.

. Go to the tutorials

The tutorials are a great place for learning and getting help if you need it. Im-
portant concepts are often reviewed and emphasised. There’s also a weekly task
that counts towards your attendance/overall grade. They’re easy marks that
you shouldn’t waste - especially if you don’t feel confident about the final.

. Do the best that you can throughout the semester and before the finals

A 60% weighted final is a lot of pressure on just one paper, so make sure your
cumulative mark up until that point is the best that it can be. It places a lot less
pressure on you and gives you that extra bit of confidence. Plus, doing well
during the semester is a good indicator that you know your content, so that’s
always good.

. Practise! Practise! Practise!

If this final point is the only thing you take away from all these tips, I'd be happy.
Remember that coding is something that requires time, work and practise. If
you're a beginner programmer and you want to do well, you have to put in the
effort. If you're struggling to understand a particular concept, do more problems
on that topic. You aren’t just limited to tutorial problems, there are so many sites
online. If you want somewhere to get started, I recommend checking out

¢ CodingBat, https://codingbat.com/python
e HackerRank, https://www.hackerrank.com/domains/python
* ProjectEuler, https://projecteuler.net/archives

https://codingbat.com/python
https://www.hackerrank.com/domains/python
https://projecteuler.net/archives

Week 01

Course outline

Assessment timeline and weightings can be found on CUSP.
https://cusp.sydney.edu.au/students/view-unit-page/alpha/INF01110
https://cusp.sydney.edu.au/students/view-unit-page/alpha/COMP9001

The recommended textbook is Sedgewick’s Introduction to Programming in Python: An
Interdisciplinary Approach. It is available for free through the University library website,
or via academic sign-in at:

https://www.oreilly.com/library/view/introduction-to-programming/
9780134076539/ 7ar

Introduction to computers
A program is a set of instructions that a computer can understand, and then execute.
A compiler will translate a source code into machine code.

* Write source code — code which a human can read
¢ Compile the code to executable code — code which a computer can read
¢ The computer then runs the executable code

You can tell Python to compile and run your program with the python3 command in
the terminal.

To check which version on Python you are running, enter the following command in
the terminal.

python3 --version

Using the terminal

Instead of navigating the folders (directories) on your computer using File Explorer
on Windows or Finder on MacOS, you can navigate your computer using commands
in the terminal. Here are the important ones to know.

Action Command

To show your current folder pwd

To list files in the current folder 1s

To make a new folder mkdir [DIRECTORY_ NAME]
To move into a folder cd [DIRECTORY_NAME]

To go back to your home folder cd -~

It may be helpful to remember these as follows.

* pwd: Print working directory
e 1s: List files and directories
* mkdir: Make directory

https://cusp.sydney.edu.au/students/view-unit-page/alpha/INFO1110
https://cusp.sydney.edu.au/students/view-unit-page/alpha/COMP9001
https://www.oreilly.com/library/view/introduction-to-programming/9780134076539/?ar
https://www.oreilly.com/library/view/introduction-to-programming/9780134076539/?ar

¢ cd: Change directory

Text editors

There are many to choose from. Choose your favourite.

¢ Visual Studio Code (https:/ /code.visualstudio.com/)
Atom (https:/ /atom.io/)

Sublime Text (https:/ /www.sublimetext.com/3)
Nano

Vim

The print function

The print function can be used to print things to the terminal. You need to invoke the
print function with parentheses () and pass inside the parenthesis what you want it
to print.

print("Hello, world!")
print (42)

Hello, world!
42

Variables and Expressions

Everything on your computer is stored as zeros and ones (binary), each zero or one is
known as a bit. 8 bits make 1 byte.

A variable is memory space, reserved by a name (identifier). There are two types of
variables:

1. Primitive: these use a fixed amount of memory
2. Object: memory used for objects can changed over time

Note: In python, everything is an object. Objects are covered in more detail
in week 6.

When working with variables:

1. DECLARE a variable
2. INITTALISE the variable
3. USE the variable

By declaring variables, You can now refer to the reserved memory space by its name.
Give your variable a value by initializing it. If not initialized, the memory space will
be filled by a default value (which differs between machines).

Variables in python are function scoped. A variable declared within a func-
tion can only be used inside that function.

Expressions are a combination of variables and other items which can be evaluated,
and will produce a value. We construct expressions using operators

6

Operators

The basic mathematical operators are

e +add

e - subtract
e *x multiply
e /divide

print(6 + 4)
print(6 - 4)
print(6 * 4)
print(6 / 4)

*

10
2
24
1.5

We also have

¢ % modulo/modulus
e // floor divide

print(6 % 4)
print(6 // 4)

Assignment

= is the assignment operator. Values on the LEFT are assigned values on the RIGHT.

x = 10
print(x)
10

In the code above, the value 10 is being assigned to the variable x. The variable x is
then evaluated before it is passed into the print function.

Shorthand assignment

X +=n # 1is equivalent toxz = + n
X -—=n # 1s equivalent toxz =z - n
X *x=n # 7s equivalent to z = * n
X /=n # is equivalent ton =z / n
x =10
X += 2

print(x)

x =10
X -= 2
print(x)

x = 10
X *= 2
print(x)

x =10
x /=2
print(x)

12
8
20
5.0

Equality
== is the equality operator. It compares the value on the LEFT to the value on the right.

print(10 == 5 + 5)
print(10 == 1 + 5)

True
False

Boolean operators

The logical boolean operators in Python are:

* not (flips the boolean value)
® and
* or

Truth table for and

and True False

True True False
False False False

def my_function():
"""This s a docstring."""
pass

def next _hailstone number(n):

mnimnn

Returns the hatlstone number following the number "n’.

This function assumes "n° <s an tnteger. If "n° is mot am,
—1integer,

the behaviour of thts function is undefined.

mnimnn

if n % 2 == 0:
return n // 2
return 3 * n + 1

Week 06

Streams and files
Input and output streams

A stream is a flow of data — into or out of a program.

¢ Streams flowing into the program are input streams: keyboard, compact disk
¢ Streams flowing out the program are output streams: monitor, hard drive

Streams only exist while a program is running. After the program ends, the stream is
closed. On the other hand, files can remain after programs end.

This is useful because:

¢ Files can be reused by different programs
¢ Convenient way to deal with large amounts of data
¢ Does not require user effort

File types

There are, generally, two types of files.

1. Binary files — less space used, read and edited by a program
2. Text files — human readable, can be edited by a human

There are no rules to what can be stored in a file.

File paths

Files are stored in your file system and can be referenced by a path.

A file path can be written in two ways:

20

1. Absolute path (from root directory, \)
2. Relative path (relative destination from current working directory)

File modes

When you open a file for reading (read mode), the program assumes the file exists and
you have permission to read from the file.

When you open a file for writing (write mode), you always begin with an empty file.

e [f file already exists, program will override
o If file does not exist, program will create it

To add to the end of an existing file, you will want to append (append mode).

Opening files in Python

The following code writes the string contents to a file called sample.txt. After running
the below command in your terminal, you should be able to see a new file with the 1s
command.

%/bash

cat << EOF > sample.txt
Apple

Banana

Carrot

EQF

Reading from a file

We use the open function to open a file.

The open function takes a filepath as its first argument and a mode as the second argu-
ment. In this case, we want to read from the file, so we specify "r" as reading mode.

f = open("sample.txt", "r")

print(f)

f.close()

<_io.TextIOWrapper name='sample.txt' mode='r' encoding='UTF-8'>
Remember to close your files after you finish working with them.
Why do we need to close files?

e It signals to the operating system that we are done working with the file.

¢ If we opened the file for writing, closing the file will flush the buffer and make
sure our changes are saved on disk.

* Having too many files open at once (like having too many programs open at
once) will slow down the computer.

There are two common ways to read from files:

21

	INFO1110/COMP9001 Introduction to Programming
	Notes from the creator
	About these notes
	Tips for doing well in INFO1110/COMP9001:

	Week 01
	Course outline
	Introduction to computers
	Using the terminal
	Text editors
	The print function
	Variables and Expressions
	Operators
	Assignment
	Shorthand assignment
	Equality
	Boolean operators
	Truth table for and
	Truth table for or

	Week 02
	Data types
	More operators
	Comparison operators
	Naming variables
	Desk checks

	Week 03
	Conditional flow
	if keyword
	elif keyword
	else keyword
	Ternary operator

	while loops
	Control flow diagrams

	Week 04
	Lists
	Iterating through a list
	Modifying a list
	Filtering elements in a list

	Week 05
	The type function
	Functions
	Why use functions?
	Examples
	Ending a function
	The difference between print and return

	Best practice
	General rules
	Docstrings

	Week 06
	Streams and files
	Input and output streams
	File types
	File paths
	File modes

	Opening files in Python
	Reading from a file
	Writing to a file
	Using with to automatically close a file

	Exceptions
	Difference between TypeError and ValueError
	Using try and except
	Using finally
	Handling multiple exceptions

	Week 07
	Testing
	Types of tests
	What to test?
	Important keywords

	Writing assertions
	Writing in/out tests
	Comparing floating point numbers

	Week 08
	List idioms
	Reading input until a sentinal value
	Finding a specific value in a list
	Counting the number of occurences in a list
	Finding the max/min value in a list
	Filtering a list in-place
	Filtering a list, without mutation

	Week 09
	Classes
	Constructors
	Instance vs class attributes
	Instance vs class methods

	Week 10
	Test methodology
	Test-driven development
	Debugging

	Week 11
	Recursion
	Why use recursion?
	Why shouldn't we use recursion?
	Recap

	Writing a recursive function
	Cumulative sum
	Factorials

	Week 12
	Lists redux
	Iterating through a 2D list
	Arrays
	Arrays vs lists
	Why use arrays?

	The numpy package
	Importing numpy
	Creating an array in numpy
	Iterating through a 2D numpy array

	Week 13
	Revision questions
	General programming
	Testing
	Functions
	Classes and objects
	Recursion

