L14: ANTICANCER AGENTS

Cancer

- cancer cells (body's own cells)
 - uncontrolled proliferation
 - faster than parent cells, may be slower than other cells (RBC)
 - · dedifferentiated state
 - back to SC (loss characteristic of parent cell), loss function, X recog connection with other cells
 - · invasive (intravasation)
 - 1° site → surrounding, loss recog of normal restraint, matrix-degrading E, surgery (remove surrounding cells too)
 - metastasis (extravasation)
 - ⁻ 2° tumour distant from 1° , via lymphatics (or blood) \rightarrow BM/lymph node/organs, hard to remove via surgery
- treatment
 - surgery (tumour, need early detection)
 - irradiation (damage DNA, adjunct to surgery)
 - chemotherapy (drug treatment)
- cause
 - mutation \rightarrow inactivation of TSG
 - mutation → activation of protooncogenes → oncogenes

Tumour Suppressor Genes

- detect DNA damage
- **-** p53
 - DNA damage → p53 activated → cell cycle arrest (arrest replication) → DNA repair / apoptosis (irreversible DNA damage)
 - gene most commonly mutated in >50% cancer
 - mutation (loss of function)
 - DNA damage unchecked → X repair, X apoptotic removal (irreversibly damaged DNA)
 - other mutations in cells accumulate
 - cancer

Protooncogenes

- cell growth & differentiation
- mutation → abnormal growth
- eg: GF, GFR (mutation→always on), members of GF signalling pathway (always activated), cell cycle transducer (faster)
- Ras
 - guanine nucleotide binding protein (GTPase)
 - Ras-GTP: on
 - Ras-GDP: off
 - · component of many cell signalling pathway for proliferation
 - central point (converge on Ras → diverge)
 - mutation
 - 20-30% tumours
 - ↓ Ras inactivation (activated) → ↓ intrinsic GTPase, ↓ susceptibility to GTPase activating protein
 - Ras-GTP become predominant → always activated → cell divides w/o GF binding → proliferation

Chemotherapy

- exploit diff btw normal & tumour cells (hard to differentiate cancer cells)
 - growth rate (traditional)
 - other bio (contemporary)
- tumour growth = exponential = need near total removal for effective treatment
- log cell kill model
 - cell destruction = 1st order (constant fraction of cells killed)
 - 10¹² tumour cells → kill 99.99% → 10⁸ tumour cells after 1 cycle of treatment → 10⁴ tumour cells after 2 cycles
 - side effects → need intermittent dosing → tumour regrowth, resistant cells (grow exponentially regardless of treatment)
- resting cells (tumour SC) resistant to treatment
- angiogenesis
 - · growth is limited by blood supply to tumour
 - new target in therapy
- non-existent therapeutic window
- treatment dose \geq dose giving side effects
- · limit dose & therapy duration
- although ✓ side effects → still give for survival
- if selective toxicity is via rapid cell division → toxicity will result from effects on other fast dividing cells
 - BM suppression → X WBC → ↓immune system → susceptible to bac infection [immunocompromised]
 - impaired wound healing
 - hair loss
 - gut epi damage → nausea/vomit

Cytotoxic Anticancer Drugs

- kill cells: damage DNA, interfere DNA synthesis, mitosis
- mostly affect rapidly diving cells (going through cell cycle frequently)

(1) Alkylating Agents

- covalently bind to nucleophilic cell component (N7 & O6 of guanine)
- [−] bifunctional: DNA cross linking (intrastrand \rightarrow X make new DNA)

Cisplatin

- discovered by chance while examining effect of electric current on bac (bac at platinum electrode → ↓DNA synthesis)
- 9 atoms, 2 leaving groups (Cl⁻ → covalent)
- bis-alkylation → intrastrand crosslink btw adjacent guanine → DNA denaturation
- trans isomer → inactive (still can bind DNA, X form crosslink)
- treat
 - · testicular & ovarian cancer
- side effects
 - nephrotoxic & neurotoxic
 - dose-limiting sensory neuropathy (irreversible, loss sensation)
 - severe nausea & vomit
 - cell release cytoplasmic content → detected in CTZ
 - ↑ nephrotoxicity
 - adjunct therapy: ondansetron (5HT₃ R antagonist)
 - BM suppression

(2) Antimetabolites

- inhibit DNA synthesis pathway
- folate <u>dihydrofolate reductase</u>, dihydrofolate <u>dihydrofolate reductase</u>, tetrahydrofolate

2'-deoxy uridylate (dUMP) <u>thymidylate synthetase</u> 2'-deoxy thymidylate (dTMP)

└→ for DNA synthesis

Methotrexate

- thymineless death (apoptosis)
- Affinity for dihydrofolate reductase (DHFR) than folate (natural subs)
- inhibit DHFR \rightarrow inhibit tetrahydrofolate (FH₄) (cofactor) \rightarrow inhibit thymidylate production (dTMP) \rightarrow inhibit DNA synthesis \downarrow lipid solubility \rightarrow X cross BBB
- resistance (use 1 dose + folate b/c diff uptake of folate in cells)
- side effects
- BM depression
- gut epi damage (X absorb nutrient)

5-Fluorouracil

- prodrug \rightarrow Pi into 5-fluorodeoxyuridine monophosphate (FdUMP)
- false subs for thymidylate synthetase → inhibit thymidylate → inhibit DNA synthesis
- folate _dihydrofolate reductase, dihydrofolate _dihydrofolate reductase, tetrahydrofolate □
 - 5-fluoro-2'-deoxyuridylate (FdUMP) thymidylate synthetase
- administered with folate
 - inhibited E is a complex with FdUMP & cofactor from folate $\rightarrow \uparrow$ toxicity
- side effects
- · BM toxicity
- gut damage

(3) Anthracyclines

Doxorubicin

- planar \rightarrow binds DNA by intercalation (slide btw bp)
- topoisomerase II
- DNA unwinding/rewinding to relieve supercoiling
 - nick/rejoin DNA
- inhibit topoisomerase II → nicked DNA → apoptosis

side effects

- cardiotoxic
 - = produce free radicals → damage cardiac tissue = $1 \text{ by co-administration of the second second$
 - ↓ by co-administration of dexrazoxane (Fe chelator → ↓Fe²⁺ mediated free radical production)

(4) Microtubules Inhibitor

microtubules

- hollow cylindrical fibres of α & β-tubulin
- separate diploid chr pair
- dynamic instability: length depends on relative rate of polymerisation vs depolymerisation (GTP→GDP dependent)

Paclitaxel

- from yew tree bark
- promote microtubules polymerisation & inhibit depolymerisation

 - prevent spindle formation
 cells X separate → X form chr
 affect cells that divide more often
- side effects
 - myelo/BM suppression
 - neurotoxicity (microtubules axonal transport)
 - nausea, vomit, hair loss

L15: ANTI-CANCER AGENTS

Drugs that exploit other aspects of tumour bio

- selective toxicity based on rapid cell division = flawed = dose-limiting side effect, kill WBC too
- drugs should be more selective, 1 side effect, desired dose can be administered

(1) Hormones

- used when tumour growth is dependent on hormones
- oestrogen
 - functional antagonist
 - · androgen-dependent prostatic tumour
- anti-oestrogen
 - oestrogen R antagonist (remove tissue sample \rightarrow check whether tissues exp oestrogen R \rightarrow if no \rightarrow useless)
 - tamoxifen
 - · oestrogen-dependent breast cancer

Angiogenesis

- growth of new blood vessels from pre-existing vessels
- tightly controlled, normal phys (late embryonic dvlp, menstrual cycle, wound healing)
- angiogenic switch
 - small localised tumour → signalling mol to nearby BV → angiogenesis → solid tumour grow & spread (red BV surround it)
 - if X angiogenesis → small, X grow larger
- multistep process
 - · degradation of basement membrane by matrix metalloproteinase
 - endo cell \rightarrow migration & proliferation
 - · form new matrix
 - · stabilised by pericytes
- endothelial cell proliferation
 - · controlled by many GF
 - · VEGF (vascular endo GF)
 - ⁻ tumour in angiogenic switch produce VEGF → endo cell proliferation → angiogenesis
- for growth & spread of solid tumour
 - require new blood endo cells (VEGF control endo cell proliferation)
 - VEGF inhibitor → novel anti-tumour agent

Metastasis

- invasive
- cancer cells invade surrounding tissue/vessels → transported via circ system to distant site → usually go to lymphatic vessels
- $(\downarrow p, X p resistant) \rightarrow reinvade \& grow at new location$
- surgical removal is useless (X remove 2° tumour)

(2) Anti-Angiogenesis Agent

- 5 VEGFs
 - · disulphide-linked dimer
 - solvent exposed loops
 - form 2 poles of R binding
 - mimetics = VEGF antagonist (prevent VEGF binding to its R)
- VEGFR
 - tyrosine kinase R (dimerisation → proliferation)
 - VEGFR 2 & 3 → selectivity
- VEGF inhibitors
 - inhibit ligands (anti-VEGF mAb)
 - · inhibit R (TK inhibitor, competitive R antagonist)

Bevacizumab

- monoclonal antibody to VEGF
- binds VEGF-A → prevent VEGF-A binding to R
- stop endo cell proliferation
- MOA
 - induce tumour hypoxia/starvation
 - \downarrow VEGF-mediated increase in vascular permeability $\rightarrow \downarrow$ interstitial p \rightarrow improve drug delivery
- + cytotoxic drugs \rightarrow best clinical effect
 - metastatic colon cancer
 - unethical to use placebo in cancer → should use current cytotoxic vs current cytotoxic + new drug

- side effects

- · proteinuria, impair wound healing
- HP, thrombosis/bleeding
- X effect on WBC $\rightarrow X$ cytotoxic

Ligands	Receptors	Location
	VEGFR-1	
placental GF		
VEGF-A	VEGFR-2 (!)	blood vessels
VEGF-B		
VEGF-C		lymphatic vessels
VEGF-D	VEGFR-3 (!)	

(3) Signalling Pathway Inhibitor

VEGF RTK Inhibitor

- small mol that bind active site of TK domain
- sunitinib
- inhibit VEGF-1, VEGF-2, PDGFR
- sorafenib
 inhibit VEGF-1, VEGF-2, PDGFR, B-RAF
- lack selectivity (inhibit multiple TK) \rightarrow good for renal cell carcinoma
- VEGFR-2 bioassay
 - monomeric monocyclic peptide
 - preclinical dvlp (Vegenics)

Chronic Myeloid Leukaemia (CML)

- 15% adult leukaemia
- only 1 mutation
- BCR-ABL kinase constitutively activated
 - chromosomal translocation → philadelphia chr
 - fusion of 2 genes = BCR & ABL (ABL is a tightly reg TK)
 - BCR-ABL essential for leukaemic cell survival
- poor prognosis (6yrs)

Imatinib Mesylate

- BCR-ABL kinase inhibitor (small mol)
 - bind kinase domain → stabilise protein in closed/inactive conf
- inhibit growth of BCR-ABL kinase exp cells in vitro suppressed growth of BCR-ABL exp human tumours in mice only for some patients
- phase I
 - · haematologic response: normalisation of blood count in 95% patients
 - cytogenetic response: ↓ philadelphia chr-positive cells
- phase III
 - better haematologic & cytogenetic than standard cytotoxic treatment
- clinical use
 - NOT cure, slows CML progression
 - resistance \rightarrow X cure
- resistance
 - BCR-ABL mutation \rightarrow prevent closed conf \rightarrow imatinib X bind
 - · new classes of TK inhibitor
 - bind irrespective of open/closed conf
 - 1 affinity against WT
 - bind imatinib-resistant mutants
- side effects
 - nausea, vomit, muscle cramp
 - · liver toxicity, fluid retention

Drug Resistance

- 1° = when drug first given hard to know 1° or 2°
- 2° = dvlp during treatment
- \uparrow dose for same killing effect \rightarrow \uparrow side effect \rightarrow limit effectiveness of chemotherapy
- tumour cells dvlp resistance
 - 1 cell number
 - rapid growth rate
 - 1 mutation rate (loss of function of TSG)
 - · drug treatment inherently selects for resistant cells
- our WBC has stable genome & x mutation $\rightarrow x$ resistant

Drug Resistance MOA

↓ intracell accumulation	1 P-glycoprotein (drug transport protein)	 in membrane part of BBB (remove toxin), protect against envm toxins active efflux pump (broad specificity) pump out >1 type of drug → multi-drug resistance resistance X depends on MOA, based on ability to come out of cells
↓ uptake by cell	methotrexate	↓ exp of folate carrier
↓ activation by cell	5-fluorouracil	Pi → inactivation
1 inactivation by cell	antimetabolites	deaminase → inactivation
insensitivity to apoptosis	loss p53 (tumour suppressor function)	cells with damaged DNA \rightarrow X apoptosis
	leukaemia, lymphoma, testicular cancer	WT p53 = responsive to chemotherapy chemo \rightarrow p53 recog damaged DNA \rightarrow apoptosis (cytotoxic)
	pancreas, lung, colon cancer	mutant p53 \rightarrow poor killing = poor response to chemotherapy

- Cancer Chemotherapy cytotoxic drugs → main therapy newer agents more selective
- - · less dose-limiting side effect
- still √ resistance