BMS101 Lecture Notes

Week 1: The cell and tissues

Week 2: Body Tissues

Week 3: Skeletal and muscular systems

Week 4: respiratory system

Week 5: Cardiovascular system

Week 6: Urinary system

Week 7: reproductive system

Week 8: Nervous system

Week 9: Integument and digestive system

Week 10: Human evolution

Week 11: Ageing & death and Endocrine system

Week 12: Lymphatic system

BMS101 Week One Summary

Anatomy: the study of structure **Physiology:** the study of function

The anatomic position:

- Standing upright
- Feet parallel on the floor
- · Head level and looking forward
- Arms at side of body
- Palms facing forward and thumbs pointing away from body

Anatomic planes:

- Coronal: divides the body into anterior and posterior
- **Transverse:** divides the body into superior and inferior
- Midsagittal: divides the body into equal left and right halves

Anatomical names:

Regional Anatomy:

- Axial: head, neck and trunk
- Appendicular: upper and lower limbs

Sizes of anatomy:

- **Microscopic:** structures too small to be seen with the unaided eye, e.g. cytology and histology
- **Gross:** structures that can be seen with the unaided eye, examples:
 - Comparative anatomy: examines similarities and differences in anatomy of species

- Developmental anatomy: study of structure changes within an individual from conception through maturity
- **Embryology:** study of developmental changes occurring prior to birth
- **Regional anatomy:** study of structures within a single region
- Surface anatomy: study of internal structures as their locations relate to regions of skin or other surface markings
- Systemic anatomy: study of structures involved with a specific activity
- **Pathological anatomy:** examines changes resulting from disease
- Radiographic anatomy: relationships among internal structures that may be visualised by specific scanning procedures
- Surgical anatomy: investigates the anatomical landmarks used before and after surgery

Organ systems:

- Respiratory
- Urinary
- Nervous
- Muscular
- Reproductive
- Skeletal
- Lymphatic
- Integumentary
- Digestive
- Endocrine
- Cardiovascular

Body cavities:

- Dorsal cavities:
 - Cranial: formed by skull bones
 - **Vertebral:** formed by vertebral column bones
- Ventral cavities:
 - **Thoracic:** the superior cavity
 - **Abdominopelvic:** the inferior cavity

Cellular functions: covering, lining, storage, movement, connection, defence, communication and reproduction

Prototypical cell has 3 basic parts:

- **1. Plasma membrane:** limits the outside of the cell and interacts with the environment through secretion and absorption
- **2. Cytoplasm:** surrounds the nucleus and carries out the main functions using specific organelles
- **3. Nucleus:** contains genetic information

Plasma membrane:

- Extremely thin outer border on cell
- Selective physical and chemical barrier deciding what goes in and out of cell
- Have two molecular components: lipids and proteins
- Made up of phospholipids which each have a polar hydrophilic head and a non-polar hydrophobic tail

Functions of membranes:

- Communication: contains receptors that recognise and respond to molecular signals
- **Intercellular connection:** establishes a flexible boundary, protects cellular contents and supports cell structure
- Physical barrier: phospholipid bilayer separates substances inside and outside of cell
- **Selective permeability:** regulates entry and exit of ions, nutrients and waste molecules through the membrane

Types of membrane proteins:

- 1. Integral: go all the way through the membrane
- **2. Peripheral:** only on one side

Cytoplasm: all materials between plasma membrane and nucleus; includes cytosol, inclusions and organelles

Cytosol: a viscous fluid containing many different dissolved substances such as ions, nutrients, proteins, carbohydrates and amino acids

Inclusions: large storage aggregates of complex molecules found in the cytosol, e.g. melanin and glycogen

Rough endoplasmic reticulum:

- Rough due to the attachment of ribosomes
- Functions to synthesise, transport or store proteins for secretion by the cell, incorporation into the plasma membrane and creation of lysosomes

Smooth endoplasmic reticulum:

- No ribosomes so walls have a smooth appearance
- Synthesis, transport and storage of lipids
- Metabolism of carbohydrates
- Detoxification of drugs, alcohol and poisons

Golgi apparatus:

 Function to receive proteins and lipids from the RER for modification, sorting and packaging