ECON 2112 Notes

Week 1, 19/2/19

Normal form games and Nash equilibrium

Game theory

Game theory

- Game theory deals with strategic situations involving multiperson decision problems
- A strategic situation (game) is one in which 2+ individuals (players) interact and jointly determine the outcome
 - Typically, every player can modify the outcome but does not have full control
- The aim of game theory is to provide at least one **solution** for every game
 - A solution is a set of recommendations about how to play the game, such that no player has incentive not to follow these recommendations (i.e. the solution is stable)
- Assumptions:
 - Players have common knowledge about the structure of the game
 - Players choose their strategies independently
 - Players may be able to communicate at a specified cost

Normal form games with pure strategies

Normal form games

- In a normal form game, players take decisions simultaneously
- Components of **normal form games**:
 - Players n players (i = 1, ..., n)
 - A strategy set for each player (S_1 , ..., S_n) where $S_i = \{s_{11}, s_{12}, ...\}$
 - Players' preferences over possible outcomes i.e. a specific payoff (u_i(s₁, ..., s_n)) for each player and each strategy profile (s₁, ..., s_n) (combination of strategies from all players, where s₁ is a particular strategy in player 1's strategy set S₁)

Definition (Normal Form game)
An <i>n</i> -player normal form game $G = (S_1, \ldots, S_n; u_1, \ldots, u_n)$ consists of
• for each player $i = 1,, n$, a set of strategies S_i ; and
■ for each player $i = 1,, n$ a utility function u_i that, for each strategy profile $(s_1,, s_n) \in S_1 \times \cdots \times S_n$ specifies a real number $u_i(s_1,, s_n) \in \mathbb{R}$.
the to cool studted, and the set by remaining test to a

• Payoffs relating to each strategy profile can be represented in a payoff matrix

	Not Confess	Confess
Not Confess	-1, -1	-9 , 0
Confess	0, -9	-6 , -6

- A **strategy profile** is the combination of (P1 strategy, P2 strategy)
- Row player's **payoffs** are typically on the left, column player's on the right