5. Industrial Microbiology

the roles of bacteria yeast in food and alcohol production

Learning Outcomes

- Fermentation
- Food/beverage production with microbes
- Industrial microbiology
- Bioprospecting

Microbes as food

- Edible fungi:
 - o Mushrooms: fungal fruiting bodies
 - Agarcius bisporu:button and portobellos
 - Quorn : Fusarium venetum
- Edible algae: Seaweed
 - o Red algae Porphyra
 - Nori (sushi)
 - Brown algae Macrocystis
 - Alginate
- Edible bacteria Nucleic acid often too concentrated for food Cyanobacterium Spirulina: Single-celled protein

Fermentation

- Fermentation is the completion of catabolism without the electron transport system and a terminal electron acceptor.
 - The hydrogens from NADH + H+ are transferred back onto the products of pyruvate, forming partly oxidized fermentation products.
- Most fermentations do not generate ATP beyond that produced by substrate-level phosphorylation.
 - Microbes compensate for the low efficiency of fermentation by consuming large quantities of substrate and excreting large quantities of products

Energetic and Redox Considerations

- Two mechanisms for catabolism of organic compounds
- Respiration
 - Exogenous electron acceptors are present to accept electrons generated from the oxidation of electron donors
- Fermentation
 - Fermented substance is initially the electron donor and later becomes the electron acceptor
 - o Relatively little energy yield

Mechanisms

- In fermentation, ATP is synthesised by substrate-level phosphorylation
 - Energy-rich phosphate bonds from phosphorylated organic intermediates transferred directly to ADP
- Organic molecules within the cell act as electron acceptors
- Therefore, redox balance is achieved by production and secretion of fermentation products

Microbial Fermentations

- Oxidation of NADH produced by glycolysis
 - Necessary to restore Redox balance
- Pyruvate or derivative used as endogenous electron acceptor
 - o This results in waste products which are no longer used by the cell
- Oxygen not needed
- Oxidative phosphorylation does not occur
 - o ATP formed by substrate-level phosphorylation

Carbohydrate Catabolism

	Aerobic Respiration	Anaerobic Respiration	Fermentation
Oxygen required	Yes	No	No
Type of phosphorylation	Substrate-level and oxidative	Substrate-level and oxidative	Substrate-level
Final electron (hydrogen) acceptor	Oxygen	NO ₃ ⁻ , SO ₄ ² -, CO ₃ ² -, or externally acquired organic molecules	Cellular organi molecules
Potential molecules of ATP produced	38 in prokaryotes, 36 in eukaryotes	2–36	2

Fermentation Pathways

- Homolactic fermentation: Produces two molecules of lactic acid
- **Ethanolic fermentation**: Produces two molecules of ethanol and two CO2
- Heterolactic fermentation: Produces one molecule of lactic acid, one ethanol, and one CO2
- Mixed-acid fermentation: Produces acetate, formate, lactate, and succinate, as well as ethanol, H2, and CO2

Applications of Fermentation

Overview of fermented foods

- Virtually all human cultures have developed varieties of fermented foods, which are food products modified biochemically by microbial growth.
- The purposes of food fermentation include:

 - To add nutrients (such as vitamins) and flavor molecules (such as esters and sulfur compounds
- Traditional fermented foods usually depend on indigenous flora (found naturally in the food) or starter cultures (from a previous fermentation).
- Major classes of fermentation reactions include:
 - Homolactic acid fermentation 0
 - Propionic acid fermentation
 - Heterolactic acid fermentation
 - Ethanolic fermentation
 - Alkaline fermentation

Acidic Fermentation of Dairy Products

Milk fermentation begins by lactic acid fermentation with Lactobacillus and Streptococcus.

- Major chemical conversions in fermented foods Carbohydrates Proteins Alkaline C6H12O6 fermentation 2 Pyruvic acid Acetyl-CoA C3H4O3 CH3C - SCOA olactic Heterolactic CO2 + H2O Lactic acid Acetic acid C3H6O3 CH3CH2OH **Propionic acid** O₂ oxidation Acetic acid, CO₂, H₂O Microbiology: An Evolving Science, Third Edition Figu Copyright © 2014 W. W. Norton & Company, Inc.
- This is followed by rennet proteolysis (by chymosin and pepsin), rendering casein insoluble.
- The cleaved peptides coagulate to form a semisolid curd.
 - Separated from the liquid portion called whey

Cheese

- Involves a standard series of steps:
 - o Milk is filtered, centrifuged, and subjected to flash pasteurization.
 - Fermenting microbes are added as a starter culture.
 - The solid curd is then cut, or cheddared.
 - Curd is then heat-treated.
 - o The pressed curd is shaped into a mold.
 - o The cheese is the ripened (or aged).
- In all fermented foods, microbial metabolism generates by-products that confer characteristic aroma and flavour.

Fermented Vegetables

Acidic vegetable fermentation

- Soybeans
 - o Microbes remove harmful elements.
 - o Mold: Rhizopus Tempeh
 - o Mold: Aspergillus Miso, soy sauce
- Cabbage, cucumbers, olives
 - Pickling: fermentation in brine (high salt) –
 - Bacterium Leuconostoc: sauerkraut, pickles, kimchi

Alkaline Vegetable Fermentation

- Soybeans
 - Bacteria: Bacillus Natto
- Eggs
 - o Bacteria: Bacillus Pidan
 - "Thousand-year eggs"
- Locust beans
 - o Bacteria: Bacillus Dawadawa

Ethanolic Fermentation

Bread

- Saccharomyces cerevisiae: Baker's yeast
- Pyruvate → Ethanol + CO2
 - o CO2 causes bread to rise.
 - Easier to chew and digest
 - o More gluten → more rise
 - Ethanol is removed by baking
- A prolonged fermentation with extensive microbial activity; occurs in the dough for an Ethiopian bread called injera
- Made from teff, a grain with no glutten
- Makes an edible "tablecloth"
- Fermentation dominated by the yeast Candida

Beer

- Saccharomyces cerevisiae:
 Brewer's yeast
- Beer derives from alcoholic fermentation of grain.
 - Barley grains are germinated, allowing enzymes to break down the starch to maltose for yeast fermentation.
 - Secondary products, such as long-chain alcohols and esters, generate the special flavours of beer.

Wine

- Saccharomyces cerevisiae: Brewer's yeast
- Wine derives from alcoholic fermentation of fruit, usually grapes.
- The grapes are crushed to release juices.
- For white wine (and not red wine) the skin is removed.
- The inoculated yeast ferments glucose to alcohol.
- Both kinds of wine usually undergo malolactic fermentation by *Oenococcus oeni* bacteria

Lactic Acid Fermentation

Homolactic fermenters – fermented milk products

- Cultured milks
 - Mesophilic fermentation → buttermilk, sour cream
 - Lactobacillus & L. lactis for acid and flavour
 - Thermophilic fermentation (45°C) → yoghurt
 - Streptococcus thermophilus acid
 - Lactobacillus bulgaricus flavour
 - Increased acid content also extends the life of the milk

Lactic and mixed-acid Fermentations

- Mixed-Acid Fermentations
 - Generate acids
 - Acetic, lactic, and succinic
- Sometimes also generate neutral products
 - o e.g., butanediol
- Characteristic of enteric [intestinal] bacteria and is an important diagnostic tool

Mixed acid pathway for glucose fermentation in native E.coli

Butanediol Production in Mixed Acid Fermentations

- Butanediol is not a product of *E. coli* mixed acid fermentation

Fermentation of cocoa beans

Туре	Reaction	Organisms
Alcoholic	Hexose → 2 Ethanol + 2 CO ₂	Yeast, Zymomonas
Homolactic	Hexose → 2 Lactate + 2 H+	Streptococcus, some Lactobacillus
Heterolactic	Hexose → Lactate ⁻ + Ethanol + CO ₂ + H ⁺	Leuconostoc, some Lactobacillus
Propionic acid	3 Lactate $^- \rightarrow$ 2 Propionate $^- +$ Acetate $^- +$ CO $_2 +$ H $_2$ O	Propionibacterium, Clostridium propionicum
Mixed acid"	Hexose → Ethanol + 2,3-Butanediol + Succinate ²⁻ + Lactate ⁻ + Acetate ⁻ + Formate ⁻ + H ₂ + CO ₂	Enteric bacteria ^b Escherichia, Salmonella, Shigella, Klebsiella, Enterobacter
Butyric acid ⁶	Hexose \rightarrow Butyrate ⁻ + 2 H ₂ + 2 CO ₂ + H ⁺	Clostridium butyricum
Butanol ^b	2 Hexose → Butanol + Acetone + 5 CO ₂ + 4 H ₂	Clostridium acetobutylicum
Caproate/Butyrate	6 Ethanol + 3 Acetate $^-$ → 3 Butyrate $^-$ + Caproate $^-$ + 2 H ₂ + 4 H ₂ O + H $^+$	Clostridium kluyveri
Homoacetogenic	Fructose → 3 Acetate ⁻ + 3 H ⁺	Clostridium aceticum

Industrial Microbiology

- Industrial microbiology is the commercial exploitation of microbes.
- It includes food production and preservation.
- Also the production of:
 - Vaccines and clinical devices
 - o Industrial solvents and pharmaceuticals
 - o Genetically modified plants and animals

Fermentation Systems

- Industrial fermenters provide environment for maximum microbial production.
 - o pH, temperature, and oxygenation are controlled.
- Upstream processing
 - Culturing of the industrial microbe to produce large quantities of the product
 - Downstream processingHarvesting of the culture and purification of the product

Microbial production in plants

- Agrobacterium tumefaciens
- Can be used to clone genes in plant genomes
- A recombinant strain has the Ti plasmid divided into two separate plasmids:
 - One with the vir operon that transfers DNA
 - Other with the T-DNA with most of its genes substituted by the desired recombinant gene
- Thus allowing genomic integration without tumor induction or opine production

Microbial Production in Animals

- Baculovirus
- Can be used to clone genes in insect genomes
- Desired gene (e.g., antibody) is spliced into a bacterial transfer vector.
- Insect culture cells are cotransfected with recombinant vector and a fluorescent marker protein.
- The two DNAs recombine within the cell, and a recombinant baculovirus is produced.
- Can be used to infect caterpillars (in their food)

Week 1: Infection The caterpillar hatches from the egg. It sits amid food in a container made of 56 individual cells, each of which contains one caterpillar. At week's end, a recombinant insect virus encoding a specific protein is sprayed into each cell.

Week 2: Production As the caterpillar grows, it eats the virus-infested food and becomes infected. The recombinant virus directs it to produce the specific protein, as well as a protein that suses it to glow.

End of week 2: Harvest The caterpillar emits an intense glow signaling that it's ready for harvesting. The caterpillars are ground up, and the specific proteins are separated and purified from caterpillar cadavers.

Bio prospecting

- Bio-prospecting is the search for organisms with potential commercial applications.
- An important aspect is "mining the genome."
- The cloned genes are transferred into an industrial strain, which must have the following attributes:
 - Genetic stability and manipulation 0
 - Inexpensive growth requirements
 - Safety
 - High level of protein expression
 - Ready harvesting of product

Bioprospecting to date

- Observation of organisms in extreme environments has yielded enzymes used in processes as diverse as washing detergents and PCR:
 - Washing detergent cold active lipases
 - PCR Thermally stable DNA polymerase
- There has been a strong drive to identify naturally occurring biomolecules that can be used in medicine:
 - o Penicillin; other antibiotics from actinomycetes
 - o Plant-derived anticancer drugs
- Production of medicines had moved towards high content screening of synthetic chemical
- GlaxoSmithKline spent six years trying to use synthetic chemistry to generate new antibiotics. This failed due to lack of chemical diversity in the library of synthetic chemicals
- Exploring the diversity of genes present in bio-systems and ecological niches still provides the greatest sources of new molecules
 - Abyssomicin C is a new antibiotic from marine bacteria. It is the first natural product to act as a pABA biosynthesis inhibitor

Genome based bioprospecting

Readings

- •Chapter 13 Energetics and Catabolism Section 13.1 p 476-7 Swiss Cheese Production All Sections p 483-486 Fermentation
- Chapter 16 Food and Industrial Microbiology Pages 584-600 Food and Microbes Pages 609-615 Industrial Microbiology Pages 605-609 Food Preservation (extra information)