Protein separation and characterisation

Separation of protein mixtures

- Relies on differences in physico-chemical properties
- Charge, size, ligand affinity, solubility, hydrophobicity, thermal stability

Column chromatography

- A protein sample applied to column equilibrates between the stationary and mobile phases
- Proteins with certain characteristics will bind to the stationary phase
 - o Those lacking the characteristic remain in the mobile phase and pass through the column
- Final step involves displacing the protein from the stationary phase "elution"
 - Introduce a particle that competes with the protein binding site on the stationary phase
- Separation by charge ion exchange chromatography
 - Protein mixture added to column containing cation exchangers
 - o Negatively charged stationary phase more negative proteins move faster, elute earlier
- Size-exclusion chromatography or gel filtration
 - Protein mixture added to column containing cross-linked polymer
 - Proteins separate by size larger molecules pass more freely, elute earlier
- Separation by affinity chromatography
 - Mixture added to column containing polymer-bound ligand specific for protein of interest
 - Binding affinity exploited protein of interest is eluted by ligand solution

Electrophoresis for protein analysis

- Electric field pulls proteins according to their charge separation
- Gel matrix hinders mobility of proteins according to their size and shape
- SDS-PAGE separate proteins according to size only small move faster
 - SDS (a detergent) binds to, and unfolds all the proteins gives all proteins a uniformly negative charge; native shape of proteins does not matter

Edman protein sequencing

- Edman degradation labels and removes the terminal residue from a peptide (by hydrolysing the terminal peptide bond)
 - o Residue is a derivative of the amino acid
- Repeating the procedure provides the amino acid sequence

Spectroscopic detection of aromatic AAs

- Aromatic AAs absorb UV light maximally at 280nm
- Concentration determined using Beer's law A = εcl
- Tryptophan absorbs 4x as much as tyrosine (at 280nm)

Ramachandran plots

- For secondary protein structure
- Darker colour = more amino acids
- Good indicator of the quality of a structure
- Most proteins occur where φ and ψ are 60^o and -60^o
 - o This is where they are most energetically stable

X-ray crystallography	NMR
Solid state (static)	Solution phase (dynamic)
Disordered regions problematic	Disorder built in – structure assumed to 'breathe'
Quality crystals needed	Pure protein in any form can be used
Cannot see hydrogens (too small for x-rays to hit)	Sees only protons (H ⁺)
Produces a single structure	Produces a series of structures (due to movement)
High power x-ray source needed	High field NMR needed
More detailed	Less detailed structure produced

Protein structure determination

X-ray crystallography

- Use an x-ray defractometer
- Crystal made of multiple 'units', each containing the same molecule
 - Increases likelihood of detection, raises signal to measureable level
- 1. X-rays hit rotating crystal, atom's electrons scatter the x-rays produces diffraction pattern
- 2. Turn diffraction pattern into electron density map using Fourier transformation
 - o Requires both amplitude and phase of diffracted waves need to deduce phase indirectly
 - o EDM interpret diffraction pattern as a plot of electron density vs. spatial arrangement
 - Diffraction is caused by electron clouds
 - Higher atomic number = greater density = larger electron clouds = greater scattering
- 3. Model building EDP is interpreted as a set of atomic coordinates
 - Fit a protein backbone, then insert the amino acid sequence
- 4. Refinement improve phases, to produce clearer maps and better models

Tellion		
Overcome phase problem	Explanation	
Multiple Isomorphous	- Heavy atom method	
Replacement (MIR)	- Multiple crystals of the same protein, but with different heavy	
	metals – compare relative scattering	
Multiple wavelength	- Anomalous scattering	
Anomalous Diffraction (MAD)	- Near absorption wavelengths, metals displays unequal Friedel pairs	
Molecular Replacement (MR)	- Similar protein already solved	
	- Use fragments of known to estimate phases of unknown structure	
Brute force "shake 'n' bake"	- Multiple guesses at solution – very computationally expensive	

- X-ray crystallography may also produce "temperature factor" for each atom
 - o Degree of movement depends on temperature
 - Affects choice of drug site (less movement = easier insertion)

Nuclear Magnetic Resonance (NMR) Spectroscopy

- Information about nuclei conformation, where atoms are located in the molecule, and dynamics
 - Insert drug where drug is more static, than areas where movement is high
- A nucleus with an odd atomic or mass number has a nuclear spin that generates a magnetic field
 - When placed in an external magnetic field, spinning protons act like bar magnets
 - Magnetic fields of spinning nuclei will align either with or against the external field
 - A photon with right amount of energy can be absorbed, causing the spinning proton to flip
 - Magnetic field strength must be increased for a shielded proton to flip at the same frequency as a naked proton
- Produces signals on a spectrum
 - Number of signals how many different kinds of protons present
 - Location of signals downfield (left) = proton is less shielded; upfield = more shielded
 - Intensity of signals number of protons of that type
 - Signal splitting number of protons on adjacent atoms
 - n = no. hydrogen atoms attached to the adjacent carbon
 - n+1 = how many peaks will be seen in the cluster
- TOCSY and NOESY determine relative distances between each proton to obtain structure

