Mono-exponential pharmacokinetics

PK key concerns

- Drug dosage
- Drug plasma concentration
- Peak plasma concentration
- Half life
- Rates (absorption, elimination)

- Hypothetical representation of the body as 'one compartment'
- Assumptions:
 - Volume of each compartment remains constant
 - o Drug instantaneously and uniformly distributes throughout the entire compartment
- Zero order kinetics e.g. 2 molecules/min number is constant
- First order kinetics e.g. 2%/min proportion is constant

Mono-exponential PK assumptions

- IV bolus instantaneous distribution
- First order output/elimination
- One compartment model

Clearance (CL)

- Definition: plasma volume cleared of a drug per unit time (volume/time, e.g. L/h)
- Efficiency of drug elimination from the body if efficiency is low, decrease the dose
- Used to estimate maintenance dose rate
- Clearance mechanisms (together make the 'total body clearance')
 - o Hepatic metabolism (hepatic clearance of drug to an active or inactive metabolite)
 - o Renal excretion (renal clearance of a drug unchanged in the urine)
 - o Elimination into bile and excreted in faeces

Area under curve (AUC)

- Area under the plasma concentration vs. time curve
 - Represents total amount of drug absorbed into systemic circulation following administration of a single dose of that drug
- Parameters to consider:
 - o Peak height concentration (C_{max})
 - Time of peak concentration (T_{max})
 - Area under the blood/serum/plasma concentration time curve (AUC)
- Calculate AUC using the trapezoidal rule (only for linear/Cartesian graphs)
 - $\circ \quad Area = \frac{1}{2}(A+B) \times H$
 - o Terminal log-linear portion (AUC_{x-∞}): C_{last}/K_{el}
 - $\bigcirc \quad \mathsf{AUC}_{0\text{-}\infty} = \mathsf{AUC}_{0\text{-}x} + \mathsf{AUC}_{x\text{-}\infty}$
 - $\circ \quad \text{Alternatively: } AUC_{0-\infty} = \frac{Dose}{Cl}$
 - AUC = all the amounts eliminated over the duration systemic circulation

PK graphs

Independent variables

o Time

Drug dose size

Zero order: $C_p = {C_p}^0 - K_{el}t$ First order: $C_p = {C_p}^0 e^{-K_{el}t}$

Dose is independent variable	Dose is independent variable	No independent variable	
PK Param Dose	C at time t Dose	Rate Of Process Drug conc	
PK parameters do not change	Concentration increases	Rate is low when conc. Is low (driving	
with dose – are independent	proportionally with dose; drug	force is drug conc.); rate is high when	
of dose; linear PK	PK is linear	conc. Is high	

Note: log-linear graph

1 cycle = increase by ten-fold

o E.g. Y-axis: 0.1, 1, 10, 100, 1000 are all spaced evenly apart

Never start Y-axis with 0 since log(0) does not exist

If using log-linear graph, the Y-axis is titled C_p (not $\log(C_p)$) since the scale is already logged

Slope = $\frac{logC_{p2} - logC_{p1}}{logC_{p2} - logC_{p1}}$

PK parameters	Definition	Units	Example
Cp	Drug concentration in plasma	Mass/volume	mg/L
C_p^0	Initial concentration after dosing	Mass/volume	mg/L
V_d	Volume of distribution	Volume	L
K _{el}	Elimination rate constant	Time ⁻¹	hr ⁻¹
CL	Clearance	Volume/time	L/h
t	Time after dosing	Time	min
AUC	Area under curve	amount of drug \times time	mg*hour/mL
		volume of fluid	

Mono-exponential PK Equations

Linear	$C_p = C_p^{\ 0} e^{-K_{el}t}$			
Log-linear (form y=ax+b)	$\log C_p = -\frac{K_{el}}{2.303}t + \log C_p^0$	$\ln C_p = \ln C_p^{\ 0} - K_{el}t$		
AUC	$Area = \frac{1}{2}(A+B) \times H$	Terminal portion = $\frac{C_{last}}{K_{el}}$	$Dose = CL \times AUC_{0-\infty}$	
PK parameters	$V_d = \frac{Dose}{C_p^{\ 0}}$	$K_{el} = \frac{0.693}{t_{1/2}}$	$CL = K_{el}V_d$	

 $\ln X = 2.303 \log X$